Tuning the structural and electronic properties of novel thiophene-pyrrole based 1,2,3,4-tetrazine

  • Rakesh Dutta
  • Dhruba Jyoti Kalita
Regular Article

Abstract

Here, we have studied the structural and optoelectronic behaviour of a series of conjugated heterocyclic polymers. The basic monomer unit of the conjugated polymers contains a backbone of novel thiophene and pyrrole based 1,2,3,4-tetrazine. The other oligomers are designed by substituting the basic monomer unit with different electron-donating and electron-withdrawing groups at the nitrogen and the 3rd C-atom of the pyrrole and the thiophene ring respectively. We have calculated dihedral angles, HOMO-LUMO gaps, excitation energies and oscillator strengths by employing TD-DFT method. Our study reveals that compounds having bulky substituents exhibit larger dihedral angles. This in turn renders an increase in the band gaps (ΔHL). Presence of the electron-withdrawing substituents also increases the ΔHL values of the oligomers. However, the electron-donating groups decrease the ΔHL values of the oligomers. Therefore, small electron-donating substituents have an overwhelming effect on the optoelectronic properties of the conjugated polymers which in turn makes them interesting materials with good conduction properties for fabrication of optoelectronic devices such as OLEDs, OFETs and solar cells.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    M. Moral, A. Garzón, G. García, J.M.G. Roldán, M. Fernández-Gómez, J. Phys. Chem. C 119, 4588 (2015)CrossRefGoogle Scholar
  2. 2.
    P. Liu, Y. Wu, H. Pan, B.S. Ong, S. Zhu, Macromolecules 43, 6368 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev. 109, 897 (2009)CrossRefGoogle Scholar
  4. 4.
    M.L. Hammock, A.N. Sokolov, R.M. Stoltenberg, B.D. Naab, Z. Bao, ACS Nano 6, 3100 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Lecover, N. Williams, N. Markovic, D.H. Reich, D.Q. Neiman, H.E. Katz, ACS Nano 6, 2865 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Min, Z.G. Zhang, S. Zhang, Y. Li, Chem. Mater. 24, 3247 (2012)CrossRefGoogle Scholar
  7. 7.
    E. Orgiu, A.M. Masillamani, J.O. Vogel, E. Treossi, A. Kiersnowski, M. Kastlar, W. Pisula, F. Dötz, V. Palermo, P. Samorì, Chem. Commun. 48, 1562 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Mushrush, A. Facchetti, M. Lefenfeld, H.E. Katz, T.J. Marks, J. Am. Chem. Soc. 125, 9414 (2003)CrossRefGoogle Scholar
  9. 9.
    S.R. González, J. Orduna, R. Alicante, B. Villacampa, K.A. McGee, J. Pina, J. Seixas de Melo, K.M. Schwaderer, J.C. Johnson, B.A. Blackorbay, J.J. Hansmeier, V.F. Bolton, T.J. Helland, B.A. Edlund, T.M. Pappenfus, J.T. López Navarrete, J. Casado, J. Phys. Chem. B 115, 10573 (2011)CrossRefGoogle Scholar
  10. 10.
    D. Aradilla, F. Estrany, C. Alemán, J. Phys. Chem. C 115, 8430 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Iino, T. Kobori, J.I. Hanna, J. Non-Cryst. Solids 358, 2516 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J.E. Anthony, A. Facchetti, M. Heeney, S.R. Marder, X. Zhan, Adv. Mater. 22, 3876 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Geib, S.C. Martens, U. Zschieschang, F. Lombeck, H. Wadepohl, H. Klauk, L.H. Gade, J. Org. Chem. 77, 6107 (2012)CrossRefGoogle Scholar
  14. 14.
    T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A. Haase, D.E. Vogel, S.D. Theiss, Chem. Mater. 16, 4413 (2004)CrossRefGoogle Scholar
  15. 15.
    S.R. Forrest, Nature 428, 911 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J. Cornil, J.L. Bredas, J. Zaumseil, H. Sirringhaus, Adv. Mater. 19, 1791 (2007)CrossRefGoogle Scholar
  17. 17.
    F. Otón, R. Pfattner, E. Pavlica, Y. Olivier, E. Moreno, J. Puigdollers, G. Bratine, J. Cornil, X. Fontrodona, M. Mas-Torrent, J. Veciana, C. Rovira, Chem. Mater. 23, 851 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S. Tokito, J. Am. Chem. Soc. 126, 8138 (2004)CrossRefGoogle Scholar
  19. 19.
    E.C.P. Smits, T.D. Anthopoulos, S. Setayesh, E. van Veenendaal, R. Coehoorn, P.W.M. Blom, B. de Boer, D.M. de Leeuw, Phys. Rev. B 73, 205316 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    G. Clavier, P. Audebert, Chem. Rev. 110, 3299 (2010)CrossRefGoogle Scholar
  21. 21.
    Z. Li, J. Ding, N. Song, X. Du, J. Zhou, J. Lu, Y. Tao, Chem. Mater. 23, 1977 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 34, 3612 (2006)CrossRefGoogle Scholar
  23. 23.
    P. Audebert, F. Miomandre, G. Clavier, M.C. Vernières, S. Badré, R. Méallet-Renault, Chem. Eur. J. 11, 5667 (2005)CrossRefGoogle Scholar
  24. 24.
    M.H.V. Huynh, M.A. Hiskey, D.E. Chavez, D.L. Naud, R.D. Gilardi, J. Am. Chem. Soc. 127, 12537 (2005)CrossRefGoogle Scholar
  25. 25.
    R. Holze, Organometallics 33, 5033 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Sahu, A.N. Panda, Macromolecules 46, 844 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    H. Sahu, S. Gupta, P. Gaur, A.N. Panda, Phys. Chem. Chem. Phys. 17, 20647 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Kuik, G.J. Wetzelaer, H.T. Nicolai, N.I. Craciun, D.M. de Leeuw, P.W. Blom, Adv. Mater. 26, 512 (2014)CrossRefGoogle Scholar
  29. 29.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ã. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 Revision E.01, Gaussian Inc. Wallingford CT, (2009)Google Scholar
  30. 30.
    S. Radhakrishnan, R. Parthasarathi, V. Subramanian, N. Somanathan, J. Chem. Phys. 123, 164905 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    R.F. Chen, L.Y. Liu, H. Fu, C. Zheng, H. Xu, Q.L. Fan, W. Huang, J. Phys. Chem. B 115, 242 (2011)CrossRefGoogle Scholar
  32. 32.
    J.M. Granadino-Roldán, A. Garzón, G. García, M. Moral, A. Navarro, M.P. Fernández-Liencres, T. Peña-Ruiz, M. Fernández-Gómez, J. Phys. Chem. C 115, 2865 (2011)CrossRefGoogle Scholar
  33. 33.
    L. Yang, Y. Liao, J.K. Feng, A.M. Ren, J. Phys. Chem. A 112, 7764 (2005)CrossRefGoogle Scholar
  34. 34.
    L. Pandey, C. Risko, J.E. Norton, J.L. Brédas, Macromolecules 45, 6405 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Y.C. Hung, J.C. Jiang, C.Y. Chao, W.F. Su, S.T. Lin, J. Phys. Chem. B 113, 8268 (2009)CrossRefGoogle Scholar
  36. 36.
    E. Jansson, P.C. Jha, H. Ågren, Chem. Phys. 330, 166 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    W. Meeto, S. Suramitr, S. Vanarat, S. Hannongbua, Chem. Phys. 349, 1 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Li, L.Y. Zou, A.M. Ren, J.K. Feng, Comput. Theor. Chem. 981, 14 (2012)CrossRefGoogle Scholar
  39. 39.
    S. Fratiloiu, S.M. Fonseca, F.C. Grozema, H.D. Burrows, M.L. Costa, A. Charas, J. Morgado, L.D.A. Siebbeles, J. Phys. Chem. C 111, 5812 (2007)CrossRefGoogle Scholar
  40. 40.
    M.E. Casida, M. Huix-Rotllant, Ann. Rev. Phys. Chem. 63, 287 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A. Dreuw, M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004)CrossRefGoogle Scholar
  42. 42.
    W. Hieringer, A. Gorling, Chem. Phys. Lett. 419, 557 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    N. Kuritz, T. Stein, R. Baer, L. Kronik, J. Chem. Theory Comput. 7, 2408 (2011)CrossRefGoogle Scholar
  44. 44.
    J. Torras, J. Casanovas, C. Alemán, J. Phys. Chem. A 116, 7571 (2012)CrossRefGoogle Scholar
  45. 45.
    J. Gierschner, J. Cornil, H.J. Egelhaaf, Adv. Mater. 19, 173 (2007)CrossRefGoogle Scholar
  46. 46.
    B.P. Karsten, L. Viani, J. Gierschner, J. Cornil, R.A.J. Janssen, J. Phys. Chem. A 112, 10764 (2008)CrossRefGoogle Scholar
  47. 47.
    W. Kuhn, Helv. Chim. Acta 31, 1780 (1948)CrossRefGoogle Scholar
  48. 48.
    E.A. Perpète, B. Champagne, J. Mol. Struct. (Theochem.) 487, 39 (1999)CrossRefGoogle Scholar
  49. 49.
    T. Körzdörfer, R.M. Parrish, J.S. Sears, C.D. Sherrill, J.-L. Brédas, J. Chem. Phys. 137, 124305 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Rakesh Dutta
    • 1
  • Dhruba Jyoti Kalita
    • 1
  1. 1.Department of ChemistryUniversity of GauhatiGuwahatiIndia

Personalised recommendations