Advertisement

Monte Carlo simulation of proton track structure in biological matter

  • Michele A. Quinto
  • Juan M. Monti
  • Philippe F. Weck
  • Omar A. Fojón
  • Jocelyn Hanssen
  • Roberto D. Rivarola
  • Philippe Senot
  • Christophe ChampionEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces

Abstract

Understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V – devoted to the modeling of the slowing-down of 10 keV–100 MeV protons in both water and DNA – where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    H. Nikjoo, S. Uehara, D. Emfietzoglou, F.A. Cucinotta, Radiat. Meas. 41, 1052 (2006)CrossRefGoogle Scholar
  2. 2.
    International Commission on Radiation Units Measurements, ICRU Report 16, ICRU, Washington, DC, USA (1970)Google Scholar
  3. 3.
    International Commission on Radiation Units Measurements, ICRU Report 49, ICRU, Washington, DC, USA (1993)Google Scholar
  4. 4.
    International Commission on Radiation Units Measurements, ICRU Report 63, ICRU, Washington, DC, USA (2000)Google Scholar
  5. 5.
    International Atomic Energy Agency Atomic and Molecular Data for Radiation Therapy and Related Research, IAEA-TECDOC-799, IAEA, Vienna, Austria (1995)Google Scholar
  6. 6.
    W. Friedland, P. Jacob, P. Bernhardt et al., Radiat. Res. 159, 401 (2003)CrossRefGoogle Scholar
  7. 7.
    M.A. Quinto, J.M. Monti, M.E. Galassi, P.F. Weck, O.A. Fojón, J. Hanssen, R.D. Rivarola, C. Champion, J. Phys. Conf. Ser. 583, 012049 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Champion, A. L’Hoir, M.F. Politis, P.D. Fainstein, R.D. Rivarola, A. Chetioui, Radiat. Res. 163, 222 (2005)CrossRefGoogle Scholar
  9. 9.
    F. Abicht, R. Prasad, M. Borghesi, G. Priebe, J. Braenzel, A. Andreev, P.V. Nickles, M. Schnürer, S. Jequier, G. Revet, V. Tikhonchuk, S. Ter-Avetisyan, Appl. Phys. Lett. 103, 253501 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    M. Michaud, P. Cloutier, L. Sanche, Phys. Rev. A 44, 5624 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    J. Meesungnoen, J.P. Jay-Gerin, A. Filali-Mouhim, S. Mankhetkorn, Radiat. Res. 158, 657 (2002)CrossRefGoogle Scholar
  12. 12.
    C. Martin, Ph.D. thesis, Univertity of Toulouse, France, 2003Google Scholar
  13. 13.
    S.T. Perkins, D.E. Cullen, M.H. Chen, J.H. Hubbel, J. Rathkopf, J. Scofield, Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1–100, Lawrence Livermore National Laboratory Report, UCRL-50400, 30 (1991)Google Scholar
  14. 14.
    R. Moccia, J. Chem. Phys. 40, 2186 (1964)ADSCrossRefGoogle Scholar
  15. 15.
    M.E. Galassi, C. Champion, P.F. Weck, R.D. Rivarola, O. Fojón, J. Hanssen, Phys. Med. Biol. 57, 2081 (2012)CrossRefGoogle Scholar
  16. 16.
    M.J. Frisch et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009)Google Scholar
  17. 17.
    M. Dingfelder, M. Inokuti, H.G. Paretzke, Radiat. Phys. Chem. 59, 255 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    I. Abril, R. Garcia-Molina, C.D. Denton, I. Kyriakou, D. Emfietzoglou, Radiat. Res. 175, 247 (2011)CrossRefGoogle Scholar
  19. 19.
    P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    D. Emfietzoglou, K. Karava, G. Papamichael, M. Moscovitch, Phys. Med. Biol. 48, 2355 (2003)CrossRefGoogle Scholar
  21. 21.
    J.A. La Verne, S.M. Pimblott, Radiat. Res. 141, 208 (1995)CrossRefGoogle Scholar
  22. 22.
    Z. Tan, Y. Xia, M. Zhao, X. Liu, Nucl. Instrum. Methods B 248, 1 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    G.D. Birnie, D. Rickwood, A. Hell, Biochim. Biophys. Acta 331, 283 (1973)CrossRefGoogle Scholar
  24. 24.
    J.M. Monti, O.A. Fojón, J. Hanssen, R.D. Rivarola, J. Phys. B 42, 195201 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 032704 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 052719 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    J. Tabet, S. Eden, S. Feil, H. Adboul-Carime, B. Farizon, M. Farizon, S. Ouaskit, T.D. Märk, Phys. Rev. A 82, 022703 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M.E. Rudd, T.V. Goffe, R.D. DuBois, L.H. Toburen, Phys. Rev. A 31, 492 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 888 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    H. Luna, A.L.F. Barros, J.A. Wyer, S.W.J. Scully, J. Lecointre, P.M.Y. Garcia, G.M. Sigaud, A.C.F. Santos, V. Senthil, M.B. Shah, C.J. Latimer, E.C. Montenegro, Phys. Rev. A 75, 042711 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    I.M. Cheshire, Proc. Phys. Soc. 84, 89 (1964)ADSCrossRefGoogle Scholar
  32. 32.
    Dz. Belkic, R. Gayet, A. Salin, Phys. Rep. 56, 279 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    A.E. Martinez, G.R. Deco, R.D. Rivarola, P.D. Fainstein, Nucl. Instrum. Methods B 43, 24 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    P.N. Abufager, A.E. Martínez, R.D. Rivarola, P.D. Fainstein, J. Phys. B 37, 817 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    A.J. Privett, J.A. Morales, Chem. Phys. Lett. 603, 82 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    R. Dagnac, D. Blanc, D.D. Molina, J. Phys. B 3, 1239 (1970)ADSCrossRefGoogle Scholar
  37. 37.
    F. Gobet, B. Farizon, M. Farizon, M.J. Gaillard, Phys. Rev. Lett. 86, 3751 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    L.H. Toburen, M.Y. Nakai, R.A. Langley, Phys. Rev. 171, 114 (1968)ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 893 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    F. Gobet, S. Eden, B. Coupier, J. Tabet, B. Farizon, M. Farizon, M.J. Gaillard, S. Ouaskit, M. Carre, T.D. Märk, Chem. Phys. Lett. 421, 68 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    J.H. Miller, A.E.S. Green, Radiat. Res. 54, 343 (1973)CrossRefGoogle Scholar
  42. 42.
    S. Uehara, L.H. Toburen, W.E. Wilson, D.T. Goodhead, H. Nikjoo, Radiat. Phys. Chem. 59, 1 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    J.J. Olivero, R.W. Stagat, A.E.S. Green, J. Geophys. Res. 77, 4797 (1972)ADSCrossRefGoogle Scholar
  44. 44.
    S. Uehara, L.H. Toburen, H. Nikjoo, Int. J. Radiat. Biol. 77, 139 (2001)CrossRefGoogle Scholar
  45. 45.
    S. Endo, E. Yoshida, H. Nikjoo, M. Hodhi, M. Ishikawa, K. Shizuma, Nucl. Instrum. Methods Phys. Res. B 194, 123 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    P.S. Krstic, R.R. Schultz, Oak Ridge National Laboratory, Oak Ridge, TN, 1998Google Scholar
  47. 47.
    C. Champion, C. Le Loirec, B. Stosic, Int. J. Radiat. Biol. 88, 62 (2012)CrossRefGoogle Scholar
  48. 48.
    C. Champion, Phys. Med. Biol. 48, 2147 (2003)CrossRefGoogle Scholar
  49. 49.
    P.L. Levesque, M. Michaud, W. Cho, L. Sanche, J. Chem. Phys. 122, 224704 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    M. Michaud, M. Bazin, L. Sanche, Int. J. Radiat. Biol. 88, 15 (2012)CrossRefGoogle Scholar
  51. 51.
    T. Fleig, S. Kneht, C. Hättig, J. Phys. Chem. A 111, 5482 (2007)CrossRefGoogle Scholar
  52. 52.
    L.J. Bremner, M.G. Curtis, I.C. Walker, J. Chem. Soc. Faraday Trans. 87, 1049 (1991)CrossRefGoogle Scholar
  53. 53.
    L. Sanche, in Radical and Radical Ion Reactivity in Nucleic Acid Chemistry, edited by M.M. Greenberg (John Wiley & Sons, Inc., 2009)Google Scholar
  54. 54.
    H. Aouchiche, C. Champion, D. Oubaziz, Radiat. Phys. Chem. 77, 107 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    M.E. Galassi, P.N. Abufager, A.E. Martinez, R.D. Rivarola, P.D. Fainstein, J. Phys. B 35, 1727 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    D. Oubaziz, M.A. Quinto, C. Champion, Phys. Rev. A 91, 022703 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    W. Ulmer, E.A. Matsinos, J. Nucl. Particle Phys. 2, 42 (2012)CrossRefGoogle Scholar
  58. 58.
    W. Ulmer, Int. J. Cancer Ther. Oncol. 2, 020211 (2014)CrossRefGoogle Scholar
  59. 59.
    Y. Matsuzaki, H. Date, K. Lee Sutherland, Y. Kiyanagi, Radiol. Phys. Technol. 3, 84 (2010)CrossRefGoogle Scholar
  60. 60.
    H. Paganetti, Phys. Med. Biol. 47, 747 (2002)CrossRefGoogle Scholar
  61. 61.
    H.K. Reynolds, D.N.F. Dunbar, W.A. Wenzel, W. Whaling, Phys. Rev. 92, 742 (1953)ADSCrossRefGoogle Scholar
  62. 62.
    J.A. Phillips, Phys. Rev. 90, 532 (1953)ADSCrossRefGoogle Scholar
  63. 63.
    C. Mitterschiffthaler, P. Bauer, Nucl. Instrum. Methods Phys. Res. B 48, 58 (1990)ADSCrossRefGoogle Scholar
  64. 64.
    W.Y. Baek, B. Grosswendt, G. Willems, Radiat. Prot. Dosimetry 122, 32 (2006)CrossRefGoogle Scholar
  65. 65.
    M. Shimizu, M. Kaneda, T. Hayakawa, H. Tsuchida, A. Itoh, Nucl. Instrum. Methods B 267, 2667 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    T. Siiskonen, H. Kettunen, K. Peräjärvi, A. Javanainen, M. Rossi, W.H. Trzaska, J. Turunen, A. Virtanen, Phys. Med. Biol. 56, 2367 (2011)CrossRefGoogle Scholar
  67. 67.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 2003)Google Scholar
  68. 68.
    J.F. Janni, At. Data Nucl. Data Tables 27, 147 (1982)ADSCrossRefGoogle Scholar
  69. 69.
    Y.J. Xu, G.S. Khandelwal, J.W. Wilson, Phys. Rev. A 32, 629 (1985)ADSCrossRefGoogle Scholar
  70. 70.
    G. Olivera, A.E. Martínez, R.D. Rivarola, P.D. Fainstein, Radiat. Res. 144, 241 (1995)CrossRefGoogle Scholar
  71. 71.
    P.D. Fainstein, G.H. Olivera, R.D. Rivarola, Nucl. Instrum. Methods B 107, 19 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    C. Champion, M.E. Galassi, P.F. Weck, O. Fojón, J. Hanssen, R.D. Rivarola, in Radiation Damage in Biomolecular Systems, Biological and Medical Physics, Biomedical Engineering, edited by G.G. Gómez-Tejedor, M.C. Fuss (Springer Science, 2012), pp. 263–289Google Scholar
  73. 73.
    C. Champion, M.A. Quinto, J.M. Monti, M.E. Galassi, P.F. Weck, O.A. Fojn, J. Hanssen, R.D. Rivarola, Phys. Med. Biol. 60, 7805 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Michele A. Quinto
    • 1
  • Juan M. Monti
    • 1
  • Philippe F. Weck
    • 2
  • Omar A. Fojón
    • 1
  • Jocelyn Hanssen
    • 1
  • Roberto D. Rivarola
    • 1
  • Philippe Senot
    • 3
  • Christophe Champion
    • 4
    Email author
  1. 1.Instituto de Física Rosario, CONICET – Universidad Nacional de RosarioEKF RosarioArgentina
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.Université de Lorraine, CNRS, Institut de ChimieMetzFrance
  4. 4.Université de Bordeaux, CNRS/IN2P3GradignanFrance

Personalised recommendations