Modelling laser-atom interactions in the strong field regime

  • Alexander GalstyanEmail author
  • Yuri V. Popov
  • Francisca Mota-Furtado
  • Patrick F. O’Mahony
  • Noël Janssens
  • Samuel D. Jenkins
  • Ochbadrakh Chuluunbaatar
  • Bernard Piraux
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces


We consider the ionisation of atomic hydrogen by a strong infrared field. We extend and study in more depth an existing semi-analytical model. Starting from the time-dependent Schrödinger equation in momentum space and in the velocity gauge we substitute the kernel of the non-local Coulomb potential by a sum of N separable potentials, each of them supporting one hydrogen bound state. This leads to a set of N coupled one-dimensional linear Volterra integral equations to solve. We analyze the gauge problem for the model, the different ways of generating the separable potentials and establish a clear link with the strong field approximation which turns out to be a limiting case of the present model. We calculate electron energy spectra as well as the time evolution of electron wave packets in momentum space. We compare and discuss the results obtained with the model and with the strong field approximation and examine in this context the role of excited states.

Graphical abstract


  1. 1.
    L.V. Keldysh, Sov. Phys. J. Exp. Theor. Phys. 20, 1307 (1965)MathSciNetGoogle Scholar
  2. 2.
    D.M. Volkov, Z. Phys. 94, 250 (1935)ADSCrossRefGoogle Scholar
  3. 3.
    F.H.M. Faisal, J. Phys. B 6, L89 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    H.R. Reiss, Phys. Rev. A 22, 1786 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. J. Exp. Theor. Phys. 23, 924 (1966)ADSGoogle Scholar
  6. 6.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. J. Exp. Theor. Phys. 24, 207 (1967)ADSGoogle Scholar
  7. 7.
    A.M. Perelomov, V.S. Popov, Sov. Phys. J. Exp. Theor. Phys. 25, 336 (1967)ADSGoogle Scholar
  8. 8.
    A. Galstyan, O. Chuluunbaatar, A. Hamido, Yu.V. Popov, F. Mota-Furtado, P.F. O’Mahony, N. Janssens, F. Catoire, B. Piraux,Phys. Rev. A 93, 023422 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    H.M. Tetchou Nganso, Yu.V. Popov, B. Piraux, J. Madroñero, M.G. Kwato Njock, Phys. Rev. A 83, 013401 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. de Bohan, B. Piraux, L. Ponce, R. Taieb, V. Véniard, A. Maquet, Phys. Rev. Lett. 89, 113002 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    H.S. Cohl, Integral Transforms and Special Functions 24, 807 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Ossicini, Boll. Un. Mat. Ital 7, 315 (1952)MathSciNetGoogle Scholar
  13. 13.
    A.M. Korolev, Sov. J. Nucl. Phys. 6, 257 (1968)Google Scholar
  14. 14.
    T.C. Rensink, T.M. Antonsen Jr., Phys. Rev. A 94, 063407 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    D. Bauer, D.B. Milosevic, W. Becker, Phys. Rev. A 72, 023415 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Lewenstein, Ph. Balcou, M.Yu. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    M. Lewenstein, K.C. Kulander, K.J. Schafer, Ph. Bucksbaum, Phys. Rev. A 51, 1495 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 81, 021403(R) (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alexander Galstyan
    • 1
    Email author
  • Yuri V. Popov
    • 2
    • 3
  • Francisca Mota-Furtado
    • 4
  • Patrick F. O’Mahony
    • 4
  • Noël Janssens
    • 1
  • Samuel D. Jenkins
    • 4
  • Ochbadrakh Chuluunbaatar
    • 3
    • 5
  • Bernard Piraux
    • 1
  1. 1.Institute of Condensed Matter and Nanosciences, Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia
  4. 4.Department of MathematicsRoyal Holloway, University of LondonSurreyUK
  5. 5.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations