Decoherence in quantum lossy systems: superoperator and matrix techniques

  • Navid Yazdanpanah
  • Mohammad Kazem TavassolyEmail author
  • Hector Manuel Moya-Cessa
Regular Article


Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.

Graphical abstract


Quantum Optics 


  1. 1.
    U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 1999)Google Scholar
  2. 2.
    T.L. Hill, Thermodynamics of small systems (Courier Corporation, 1962)Google Scholar
  3. 3.
    C.W. Choo, Information Management for the Intelligent Organization: the Art of Scanning the Environment (Information Today Inc., 2002)Google Scholar
  4. 4.
    W.R. Hamilton, On a General Method of Expressing the Paths of Light, of the Planets, by the Coefficients of a Characteristic Function (PD Hardy, 1833)Google Scholar
  5. 5.
    W. Vogel, D.G. Welsch, Quantum Theory of Damping (Wiley Online Library, 2006)Google Scholar
  6. 6.
    A. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    W.G. Unruh, W.H. Zurek, Phys. Rev. D 40, 1071 (1989)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.A. Wheeler, W.H. Zurek, Quantum Theory of Measurement (Princeton University Press, Princeton, 1986)Google Scholar
  9. 9.
    P.O. Lowdin, Phys. Rev. 97, 1474 (1955)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    N. Gregoire, I. Prigogine, Self-organization in nonequilibrium systems (Wiley, New York, 1977)Google Scholar
  11. 11.
    J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Lindblad, Math. Phys. 48, 119 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    A. Kossakowski, Rep. Math. Phys. 3, 247 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    H. Risken, Fokker-Planck Equation (Springer, Berlin, Heidelberg, 1984)Google Scholar
  15. 15.
    P. Langevin, CR Acad. Sci. Paris 146, 530 (1908)Google Scholar
  16. 16.
    G.J. Milburn, Phys. Rev. A 44, 5401 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    H.M. Moya-Cessa, V. Bužek, M.S. Kim, P.L. Knight, Phys. Rev. A 48, 3900 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    H.M. Moya-Cessa, Phys. Rep. 432, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Piprek, Y.A. Akulova, D.I. Babic, L.A. Coldren, J.E. Bowers, Appl. Phys. Lett. 72, 1814 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    C.C. Gerry, Phys. Rev. A 59, 4095 (1999)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Beige, S.F. Huelga, P.L. Knight, M.B. Plenio, R.C. Thompson, J. Mod. Opt. 47, 401 (2000)ADSGoogle Scholar
  22. 22.
    M.J. Faghihi, M.K. Tavassoly, J. Phys. B: At. Mol. Opt. Phys. 45, 035502 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    V. Weisskopf, E. Wigner, Z. Phys. 63, 54 (1930)ADSCrossRefGoogle Scholar
  24. 24.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, United Kingdom, 1997)Google Scholar
  25. 25.
    J.G. Peixoto de Faria, M.C. Nemes, Phys. Rev. A 59, 3918 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    V. Gorini, A. Kossakowski, E.G. Sudarshan, J. Math. Phys. 17, 821 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Navid Yazdanpanah
    • 1
  • Mohammad Kazem Tavassoly
    • 1
    • 2
    Email author
  • Hector Manuel Moya-Cessa
    • 3
  1. 1.Atomic and Molecular Group, Faculty of Physics, Yazd UniversityYazdIran
  2. 2.The Laboratory of Quantum Information Processing, Yazd UniversityYazdIran
  3. 3.Instituto Nacional de AstrofísicaPue.Mexico

Personalised recommendations