Fluorine atoms interaction with the nanoporous materials: experiment and DFT simulation

  • Yuri A. Mankelevich
  • Ekaterina N. VoroninaEmail author
  • Tatyana V. Rakhimova
  • Alexander P. Palov
  • Dmitry V. Lopaev
  • Sergey M. Zyryanov
  • Mikhail R. Baklanov
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces


Fluorine atoms interactions with organosilicate glass (OSG)-based low-κ dielectric films are experimentally and theoretically studied. One-dimensional 1-D Monte Carlo & gas-surface kinetics (MC&GSK) model and density functional theory (DFT) simulations used for the development of the multi-step mechanism of OSG films damage and etching are further verified on FTIR spectroscopy data. DFT method is applied to calculate vibrational mode frequencies and their shifts under F atoms flux. In the frame of 1-D model, evolutions of the SiCH3 and appeared SiCH x F y surface groups distributions inside the porous films are calculated as a function of F atoms dose. F atoms quasi-chemisorption on surface SiO x groups accompanied by fourth-coordinated Si atoms transition to pentavalent Si states is related with the experimentally observed fast fluorination stage and vibrational frequency shifts. In addition, quasi-chemisorbed F atoms induce the weakening of the adjacent Si–O bonds in O x SiF y surface complexes promoting breaks of these Si–O bonds under further F atoms attacks. Quasi-chemisorbed F atoms could be also responsible for F atoms recombination on SiO x surfaces.

Graphical abstract


  1. 1.
    V. Jousseaume, A. Zenasni, O. Gourhant, L. Favennec, M.R. Baklanov, in Advanced Interconnects for ULSI technology, edited by M.R. Baklanov, P.S. Ho, E. Zschech (Wiley & Sons, 2012)Google Scholar
  2. 2.
    M.R. Baklanov, J.-F. de Marneffe, D. Shamiryan, A.M. Urbanowicz, H. Shi, T.V. Rakhimova, H. Huang, P.S. Ho, J. Appl. Phys. 113, 041101 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Iba, S. Ozaki, M. Sasaki, Y. Kobayashi, T. Kirimura, Y. Nakata, Microelectronic Engineering 87, 451 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Iba, T. Kirimura, M. Sasaki, Y. Kobayashi, Y. Nakata, M. Nakaishi, Jpn J. Appl. Phys. 47, 6923 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    O.V. Braginsky, A.S. Kovalev, D.V. Lopaev, E.M. Malykhin, Yu.A. Mankelevich, T.V. Rakhimova, A.T. Rakhimov, A.N. Vasilieva, S.M. Zyryanov, M.R. Baklanov, J. Appl. Phys. 108, 073303 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    T.V. Rakhimova, D.V. Lopaev, Yu.A. Mankelevich, A.T. Rakhimov, S.M. Zyryanov, K.A. Kurchikov, N.N. Novikova, M.R. Baklanov, J. Phys. D: Appl. Phys. 48, 175203 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    T.V. Rakhimova, A.T. Rakhimov, Yu.A. Mankelevich, D.V. Lopaev, A.S. Kovalev, A.N. Vasil’eva, O.V. Proshina, O.V. Braginsky, S.M. Zyryanov, K. Kurchikov, N.N. Novikova, M.R. Baklanov, Appl. Phys. Lett. 102, 111902 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    T.V. Rakhimova, A.T. Rakhimov, Yu.A. Mankelevich, D.V. Lopaev, A.S. Kovalev, A.N. Vasil’eva, S.M. Zyryanov, K. Kurchikov, O.V. Proshina, D.G. Voloshin, N.N. Novikova, M.B. Krishtab, M.R. Baklanov, J. Phys. D: Appl. Phys. 47, 025102 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    E.N. Voronina, Yu.A. Mankelevich, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, A.I. Zotovich, M.R. Baklanov, Eur. Phys. J. D 71, 111 (2017)CrossRefGoogle Scholar
  10. 10.
    H. F. Winters, J.W. Coburn, Surf. Sci. Rep. 14, 161 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    D.L. Flamm, C.J. Mogab, E.R. Sklaver, J. Appl. Phys. 50, 6211 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    V.M. Donnelly, A. Kornblit, J. Vac. Sci. Technol. A 31, 050825 (2013)CrossRefGoogle Scholar
  13. 13.
    T. Tatsumi, Appl. Surf. Sci. 253, 6716 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    T.V. Rakhimova, D.V. Lopaev, Yu.A. Mankelevich, K.A. Kurchikov, S.M. Zyryanov, A.P. Palov, O.V. Proshina, K.I. Maslakov, M.R. Baklanov, J. Phys. D: Appl. Phys. 48, 175204 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    W. Wang, P.R. Cha, S.H. Lee, G. Kim, M.J. Kim, K. Cho, Appl. Surf. Sci. 257, 8767 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Booth, G. Cunge, P. Chabert, N. Sadeghi, J. Appl. Phys. 85, 3097 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Yu.A. Mankelevich, E.N. Voronina, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, M.R. Baklanov, J. Phys. D: Appl. Phys. 49, 345203 (2016)CrossRefGoogle Scholar
  18. 18.
    O.V. Proshina, T.V. Rakhimova, D.V. Lopaev, V. Samara, M.R. Baklanov, J.-F. de Marneffe, Plasma Sources Sci. Technol. 24, 055006 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    R. Walsh, Accounts Chem. Res. 14, 246 (1981)CrossRefGoogle Scholar
  20. 20.
    D.R. Burges, M.R. Zachariah, W. Tsang, P.R. Westmoreland, Prog. Energy Combust. Sci. 21, 453 (1996)CrossRefGoogle Scholar
  21. 21.
    A.P. Palov, E.N. Voronina, T.V. Rakhimova, D.V. Lopaev, S.M. Zyryanov, Yu.A. Mankelevich, J. Vac. Sci. Technol. B 34, 041205 (2016)CrossRefGoogle Scholar
  22. 22.
    Z. Liping, J.-F. de Marneffe, M.H. Heyne, S. Naumov, Y. Sun, A. Zotovich, Z. Otell, F. Vajda, S. De Gendt, M.R. Baklanov, ECS J. Solid State Sci. Technol. 4, 3098 (2015)Google Scholar
  23. 23.
    D.V. Lopaev, A.V. Smirnov, Plasma Phys. Rep. 30, 882 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    B.J. Delley, Chem. Phys. 113, 7756 (2000)ADSGoogle Scholar
  25. 25.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    V. Sadovnichy, A. Tikhonravov, V. Voevodin, V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale, edited by J.S. Vetter (Chapman & Hall/CRC Computational Science series, CRC Press, Boca Raton, 2013)Google Scholar
  28. 28.
    S.E. Denmark, G.L. Beutner, Angew. Chem. Int. Ed. 47, 1560 (2008)CrossRefGoogle Scholar
  29. 29.
    L.M. Wheeler, N.R. Neale, T. Chen, U.R. Kortshagen, Nat. Commun. 4, 2197 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    B.J. Garrison, W.A. Goddard III, Phys. Rev. B 36, 9805 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    R. Walsh, Surf. Sci. 496, 271 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    K. Hiraoka, M. Nasu, A. Minamitsu, A. Shimizu, Sh. Yamabe, J. Phys. Chem. A 104, 8353 (2000)CrossRefGoogle Scholar
  33. 33.
    R.A. King, V.S. Mastryukov, H.F. Schaefer III., J. Chem. Phys. 105, 6880 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Larson, T.B. McMahon, J. Am. Chem. Soc. 107, 766 (1985)CrossRefGoogle Scholar
  35. 35.
    V. Pankov, J.C. Alonso, A. Ortiz, J. Appl. Phys. 86, 275 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yuri A. Mankelevich
    • 1
  • Ekaterina N. Voronina
    • 2
    Email author
  • Tatyana V. Rakhimova
    • 1
  • Alexander P. Palov
    • 1
  • Dmitry V. Lopaev
    • 1
  • Sergey M. Zyryanov
    • 1
    • 2
  • Mikhail R. Baklanov
    • 1
  1. 1.Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Physics, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations