Experimental and DFT study of nitrogen atoms interactions with SiOCH low-κ films

  • Ekaterina N. VoroninaEmail author
  • Yuri A. Mankelevich
  • Tatyana V. Rakhimova
  • Alexander P. Palov
  • Dmitry V. Lopaev
  • Sergey M. Zyryanov
  • Alexey I. Zotovich
  • Mikhail R. Baklanov
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces


Damage of porous organosilicate glass (OSG) films with low dielectric constants (low-κ films) in plasma processing is a critical problem for modern microelectronics. For this problem, understanding and revealing of basic reaction steps for radicals etching and damage are of importance. Previously we have studied experimentally and theoretically the etching and damage of low-κ dielectric films under oxygen and fluorine atoms. Here the effects of N atoms on OSG films are studied experimentally by Fourier Transform InfraRed (FTIR) spectroscopy method and theoretically by density functional theory (DFT) method. Experimental FTIR spectra are compared with calculated vibrational spectra to reveal the relevant surface SiCH x N y groups which could be produced in multi-step reactive collisions of N atoms in ground and lower metastable states with OSG low-κ dielectric films.

Graphical abstract


  1. 1.
    M.R. Baklanov, J.-F. de Marneffe, D. Shamiryan, A.M. Urbanowicz, H. Shi, T.V. Rakhimova, H. Huang, P.S. Ho, J. Appl. Phys. 113, 041101 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    D. Moore, R. Carter, H. Cui, P. Burke, P. McGrath, S.Q. Gu, D. Gidley, H. Peng, J. Vac. Sci. Technol. B 23, 332 (2005)CrossRefGoogle Scholar
  3. 3.
    S.P. Behera, Ph.D. Thesis, University of North Texas, 2011Google Scholar
  4. 4.
    N. Posseme, L. Vallier, C.-L. Kao, C. Licitra, C. Petit-Etienne, C. Mannequin, P. Gonon, S. Belostotskiy, J. Pender, S. Banola, O. Joubert, S. Nemani, New fluorocarbon free chemistry proposed as solution to limit porous SiOCH film modification during etching, in 2013 IEEE International Interconnect Technology Conference (IITC), Kyoto, 2013, pp. 1–3Google Scholar
  5. 5.
    J. Achard, F. Silva, A. Tallaire, X. Bonnin, G. Lombardi, K. Hassouni, A. Gicquel, J. Phys. D: Appl. Phys. 40, 6175 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S. Bogdanov, A. Vikharev, A. Gorbachev, A. Muchnikov, D. Radishev, N. Ovechkin, V. Parshin, Chemical Vapor Deposition 20, 32 (2014)CrossRefGoogle Scholar
  7. 7.
    T.V. Rakhimova, D.V. Lopaev, Yu.A. Mankelevich, A.T. Rakhimov, S.M. Zyryanov, K.A. Kurchikov, N.N. Novikova, M.R. Baklanov, J. Phys. D: Appl. Phys. 48, 175203 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    T.V. Rakhimova, D.V. Lopaev, Yu.A. Mankelevich, K.A. Kurchikov, S.M. Zyryanov, A.P. Palov, O.V. Proshina, K.I. Maslakov, M.R. Baklanov, J. Phys. D: Appl. Phys. 48, 175204 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Yu.A. Mankelevich, E.N. Voronina, T.V. Rakhimova, A.P. Palov, D.V. Lopaev, S.M. Zyryanov, M.R. Baklanov, J. Phys. D: Appl. Phys. 49, 345203 (2016)CrossRefGoogle Scholar
  10. 10.
    O.V. Braginsky, A.S. Kovalev, D.V. Lopaev, E.M. Malykhin, Yu.A. Mankelevich, T.V. Rakhimova, A.T. Rakhimov, A.N. Vasilieva, S.M. Zyryanov, M.R. Baklanov, J. Appl. Phys. 108, 073303 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    D.V. Lopaev, A.V. Volynets, S.M. Zyryanov, A.I. Zotovich, A.T. Rakhimov, J. Phys. D: Appl. Phys. 50, 075202 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    R. Nyquist, in Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra (Elsevier, 2001)Google Scholar
  13. 13.
    G. Socrates, in Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, 2004)Google Scholar
  14. 14.
    H. Yamamoto, K. Asano, K. Ishikawa, M. Sekine, H. Hayashi, I. Sakai, T. Ohiwa, K. Takeda, H. Kondo, M. Hori, J. Appl. Phys. 110, 123301 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    NIST Chemistry WebBook,
  17. 17.
    F. Jensen, in Introduction to computational chemistry (John Wiley & Sons, Chichester, 2007)Google Scholar
  18. 18.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Yu.A. Mankelevich, A.F. Pal, N.A. Popov, T.V. Rakhimova, A.V. Filippov, Plasma Phys. Rep. 27, 979 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    D.I. Slovetsky, in Mechanisms of Chemical Reactions in Non Equilibrium Plasmas (Nauka, Moscow, 1980)Google Scholar
  22. 22.
    T. Takayanagi, Y. Kurosaki, K. Yokoyama, Int. J. Quantum Chem. 79, 190 (2000)CrossRefGoogle Scholar
  23. 23.
    N. Balucani, A. Bergeat, L. Cartechini, G.G. Volpi, P. Casavecchia, D. Skouteris, M. Rosi, J. Phys. Chem. A 113, 11138 (2009)CrossRefGoogle Scholar
  24. 24.
    Y. Kurosaki, T. Takayanagi, K. Sato, Sh. Tsunashima, J. Phys. Chem. A 102, 254 (1998)CrossRefGoogle Scholar
  25. 25.
    N. Balucani, Chem. Soc. Rev. 41, 5473 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ekaterina N. Voronina
    • 1
    • 2
    Email author
  • Yuri A. Mankelevich
    • 1
  • Tatyana V. Rakhimova
    • 1
  • Alexander P. Palov
    • 1
  • Dmitry V. Lopaev
    • 1
  • Sergey M. Zyryanov
    • 1
    • 2
  • Alexey I. Zotovich
    • 1
    • 2
  • Mikhail R. Baklanov
    • 1
  1. 1.Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Physics, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations