C5H9N isomers: pointers to possible branched chain interstellar molecules

  • Emmanuel E. Etim
  • Prasanta Gorai
  • Ankan Das
  • Elangannan Arunan
Regular Article
Part of the following topical collections:
  1. Topical Issue: Low-Energy Interactions related to Atmospheric and Extreme Conditions

Abstract

The astronomical observation of isopropyl cyanide further stresses the link between the chemical composition of the interstellar medium (ISM) and molecular composition of the meteorites in which there is a dominance of branched chain amino acids as compared to the straight. However, observations of more branched chain molecules in ISM will firmly establish this link. In the light of this, we have considered C5H9N isomeric group in which the next higher member of the alkyl cyanide and other branched chain isomers belong. High-level quantum chemical calculations have been employed in estimating accurate energies of these isomers. From the results, the only isomer of the group that has been astronomically searched, n-butyl cyanide is not the most stable isomer and therefore, which might explain why its search could only yield upper limits of its column density without a successful detection. Rather, the two most stable isomers of the group are the branched chain isomers; tert-butylnitrile and isobutyl cyanide. Based on the rotational constants of these isomers, it is found that the expected intensity of tert-butylnitrile is the maximum among this isomeric group. Thus, this is proposed as the most probable candidate for astronomical observation. A simple LTE (local thermodynamic equilibrium) modelling has also been carried out to check the possibility of detecting tert-butyl cyanide in the millimetre-wave region.

Graphical abstract

References

  1. 1.
    E.E. Etim, E. Arunan, Planex Newsletter 5, 16 (2015)Google Scholar
  2. 2.
    E.E. Etim, P. Gorai, Das. Ankan, S.K. Chakrabarti, E. Arunan, ApJ 832, 144 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    T. Hasegawa, E. Herbst, C.M. Leung, Astrophys. J. Supp. Ser. 82, 167 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    A. Das, K. Acharyya, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 409, 789 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A. Das, S.K. Chakrabarti, Mon. Not. R. Astron. Soc. 418, 545 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. Das, L. Majumdar, S.K. Chakrabarti, D. Sahu, New Astronomy 35, 53 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    A.C.A. Boogert, P. Ehrenfreund, ASPC 309, 547 (2004)ADSGoogle Scholar
  8. 8.
    E.L. Gibb, D.C.B. Whittet, A.C.A. Boogert, A.G.G.M. Tielens, ApJS 151, 35 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S. Ioppolo, H.M. Cuppen, C. Romanzin, E.F. Van Dishoeck, H. Linnartz, APJ 686, 1474 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    K.I. Oberg, R.T. Garrord, E.F. Van Dishoeck, H. Linnartz, A&A 504, 891 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A. Belloche, R.T. Garrod, H.S.P. Müller, K.M. Menten, Sci. 345, 158 (2014)CrossRefGoogle Scholar
  12. 12.
    F. Vazart, D. Calderini, C. Puzzarini, D. Skouteris, V. Barone, J. Chem. Theory Comput. 12, 5385 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Vazart, D. Calderini, D. Skouteris, C. Latouche, V. Barone, J. Chem. Theory Comput. 11, 1165 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Vazart, C. Latouche, D. Skouteris, N. Balucani, V. Barone, ApJ 810, 111 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    D. Skouteris, N. Balucani, N. Faginas-Lago, S. Falcinelli, M. Rosi, A&A 584, A76 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    A. Belloche, R.T. Garrod, H.S.P. Müller, K.M. Menten, C. Comito, P. Schilke, A&A 499, 215 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    H.S.P. Müller, A. Coutens, A. Walters, J.U. Grabow, S. Schlemmer, J. Mol. Spectrosc. 267, 100 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    H.K. Hall Jr., J.H. Baldt, J. Am. Chem. Soc. 93, 140 (1971)CrossRefGoogle Scholar
  19. 19.
    NIST: http://webbook.nist.gov/chemistry/ Accessed in May (2016)
  20. 20.
    E. Elsila, J.P. Dworkin, M.P. Bernstein, M.P. Martin, S.A. Sandford, ApJ 660, 911 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    O. Botta, J.L. Bada, Surveys in Geophysics 23, 411 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Cronin, S. Pizzarello, Adv. Space Res. 3, 5 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    M.J. Frisch et al., G09:RevC.01 (Gaussian, Inc., Wallingford CT, 2013)Google Scholar
  24. 24.
    E.E. Etim, E. Arunan, Eur. Phys. J. Plus 131, 448 (2016)CrossRefGoogle Scholar
  25. 25.
    E.E. Etim, E. Arunan, Adv. Space Res. 59, 1161 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    E.E. Etim, E. Arunan, Astrophys. Space Sci. 362, 4 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126, 084108 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    L.J. Nugent, D.E. Mann, D.R.Jr. Lide, J. Chem. Phys. 36, 965 (1962)ADSCrossRefGoogle Scholar
  29. 29.
    B. Dutta, R. De, C. Pal, J. Chowdhury, AcSpA 96, 837 (2012)ADSGoogle Scholar
  30. 30.
    R.K. Bohn, J.L. Pardus, J. August, T. Brupbacher, W. Jäger, J. Mol. Struct. 413, 293 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    M.H. Ordu, H.S.P. Müller, A. Walters, M. Nuñez, F. Lewen, A. Belloche, K.M. Menten, S. Schlemmer, A&A 541, A121 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    P. Gorai, A. Das, B. Sivaraman, E.E. Etim, S.K. Chakrabarti, APJ (in press)Google Scholar
  33. 33.
    M. Lattelais, F. Pauzat, J. Pilmé, Y. Ellinger, C. Ceccarelli, A&A 532, A39 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    G.A. Crowder, J. Mol. Struct. (Theochem.) 200, 235 (1989)CrossRefGoogle Scholar
  35. 35.
    S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ 448, 232 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    Z. Kisiel, Chem. Phys. Lett. 118, 3 (1985)CrossRefGoogle Scholar
  37. 37.
    L.J. Nugent, D.E. Mann, D.R. Lide Jr., J. Chem. Phys. 36, 4 (1962)CrossRefGoogle Scholar
  38. 38.
    H.M. Pickett, J. Mol. Spectrosc. 148, 371 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    N.W. Howard, A.C. Legon, C.A. Rego, A.L. Wallwork, J. Mol. Struct. 19, 181 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    P. Gorai, A. Das, L. Majumdar, S.K. Chakrabarti, B. Sivaraman, E. Herbst, Mol. Astrophys. 6, 36 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Emmanuel E. Etim
    • 1
    • 3
  • Prasanta Gorai
    • 2
  • Ankan Das
    • 2
  • Elangannan Arunan
    • 1
  1. 1.Inorganic and Physical Chemistry Department, Indian Institute of Science BangaloreKarnatakaIndia
  2. 2.Indian Centre for Space Physics, 43 Chalantika, Garia Station RoadKolkataIndia
  3. 3.Department of Chemical SciencesFederal University WukariWukari, Taraba StateNigeria

Personalised recommendations