Advertisement

Improving optical absorption in a-Si thin films with TiO2 Mie scatterers

  • Giorgos Giannakoudakis
  • Marcel Di Vece
Open Access
Regular Article

Abstract

To increase the optical absorption in very thin a-Si films is relevant for more efficient and inexpensive photovoltaics. In this work we deposited TiO2 particles with a gas aggregation source on top of a-Si thin films and study the effect on optical absorption. When using thin films, anti-reflection and enhanced-reflection occurs depending on the thickness, which was employed in this study. The experiments were compared with finite difference time domain (FDTD) simulations which yielded good agreement. Both increased and decreased optical absorption was measured, depending on the photon energy range. This work demonstrates that by tailoring the various parameters, the TiO2 particles can contribute to increasing the efficiency of an a-Si based solar cell.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    H. Atwater, A. Polman. Nat. Mater. 9, 205 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Di Vece, A.B. Laursen, L. Bech, C.N. Maden, M. Duchamp, R.V. Mateiu, S. Dahl, I. Chorkendorff, J. Photochem. Photobio. A: Chem. 230, 10 (2012)CrossRefGoogle Scholar
  3. 3.
    M.L. Brongersma, Y. Cui, S. Fan, Nat. Mater. 13, 451 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Science 354, 6314 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Spinelli, A. Polman, IEEE J. Photovolt. 4, 554 (2014)CrossRefGoogle Scholar
  6. 6.
    P. Spinelli M.A. Verschuuren, A. Polman. Nat. Commun. 3, 692 (2012)CrossRefGoogle Scholar
  7. 7.
    Z.Y. Wang, R.J. Zhang, S.Y. Wang, M. Lu, X. Chen, Y.X. Zheng, L.Y. Chen, Z. Ye, C.Z. Wang, K.M. Ho, Sci. Rep. 5, 7810 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S.J. Kim, I. Thomann, J. Park, J-H. Kang, A.P. Vasudev, M.L. Brongersma, Nano Lett. 14, 1446 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    H. Xu, X. Chen, S. Ouyang, T. Kako, J. Ye, J. Phys. Chem. C 116, 3833 (2012)CrossRefGoogle Scholar
  10. 10.
    J.A. Schuller, R. Zia, T. Taubner, M.L. Brongersma, Phys. Rev. Lett. 99, 107401 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S. Nunomura, A. Minowa, H. Sai, M. Kondo, Appl. Phys. Lett. 97, 063507 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    L. Cao, J.-S. Park, P. Fan, B. Clemens, M.L. Brongersma, Nano Lett. 10, 1229 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Nat. Commun. 5, 3402 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    M. Karg, T.A.F. König, M. Retsch, C. Stelling, P.M. Reichstein, T. Honold, M. Thelakkat, A. Fery, Mater. Today 18, 185 (2015)CrossRefGoogle Scholar
  15. 15.
    M.J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, I. Crupi, Nanotechnology 26, 135202 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S. Son, S.H. Hwang, C. Kim, J.Y. Yun, J. Jang, ACS Appl. Mater. Interfaces 5, 4815 (2013)CrossRefGoogle Scholar
  17. 17.
    J.R. Devore, J. Opt. Soc. Am. 41, 416 (1951)ADSCrossRefGoogle Scholar
  18. 18.
    S.H. Kang, J.-Y. Kim, H.S. Kim, H.-D. Koh, J.-S. Lee, Y.-E. Sung, J. Photochem. Photobio. A: Chem. 200, 294 (2008)CrossRefGoogle Scholar
  19. 19.
    E. Barborini, I.N. Kholmanov, A.M. Conti, P. Piseri, S. Vinati, P. Milani, C. Ducati, Eur. Phys. J. D 24, 277 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    O. Polonskyi, T. Peter, A.M. Ahadi, A. Hinz, T. Strunskus, V. Zaporojtchenko, H. Biederman, F. Faupel, Appl. Phys. Lett. 103, 033118 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen, Mater. Sci. Eng. R 69, 1 (2010)CrossRefGoogle Scholar
  22. 22.
    E. Barborini, I.N. Kholmanov, P. Piseri, C. Ducati, C.E. Bottani, P. Milani, Appl. Phys. Lett. 81, 3052 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    T. van der Vliet, M. Di Vece, Thin Solid Films 603, 404 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    H. Haberland, M. Mail, M. Mossier, Y. Qiang, T. Reiners, Y. Thurner, J. Vac. Sci. Technol. A 12, 2925 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    K. Wegner, P. Piseri, H.V. Tafreshi, P. Milani, J. Phys. D: Appl. Phys. 39, R439 (2006)CrossRefGoogle Scholar
  27. 27.
    W. Tang, J.J. Eilers, M.A. van Huis, D. Wang, R.E.I. Schropp, M. Di Vece, J. Phys. Chem. C 119, 11042 (2015)CrossRefGoogle Scholar
  28. 28.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)Google Scholar
  29. 29.
    K.M. Reddy, S.V. Manorama, A.R. Reddy, Mater. Chem. Phys. 78, 239 (2002)CrossRefGoogle Scholar
  30. 30.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  31. 31.
    J. van de Groep, A. Polman, Opt. Express 21, 26285 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Nanophotonics – Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht UniversityUtrechtThe Netherlands
  2. 2.Laboratory of Solid State Physics and Magnetism, Department of Physics and AstronomyLeuvenBelgium
  3. 3.CIMAINA and Dipartimento di Fisica, Università di MilanoMilanoItaly

Personalised recommendations