Scalings and universality for high-frequency excited high-pressure argon microplasma

  • Min Uk Lee
  • Jimo Lee
  • Gunsu S. Yun
  • Jae Koo Lee
Regular Article

Abstract

The breakdown transition mechanism, scaling law for transition frequency, and universal law for breakdown voltage of a Ramsauer gas Ar with various ranges of neutral gas pressure and micron gap distance between parallel electrodes are examined. The electron kinetics in argon gas is analyzed to understand the reason of the abrupt transition of breakdown voltage partitioning γ- and α-regimes. The quiver motion of electron in high frequency source implies that the breakdown voltage drastically drops when the oscillating amplitude of an electron becomes smaller than its critical value. The scaling law, which reveals that the transition frequency is inversely proportional to the neutral gas pressure and the gap distance to the fractional power, supports the conjecture about the transition mechanism, and this is confirmed by particle-in-cell incorporating Monte Carlo collision (PIC/MCC) simulations. Breakdown voltage as a function of the product of the neutral gas pressure and gap distance, the ratio of the driving frequency and neutral gas pressure, secondary electron emission coefficient induced by the ion bombardment, and the ratio of gap distance over the radius of electrodes is expressed by the universal law which, as well, are confirmed by the PIC/MCC and fluid simulations. Furthermore, no universality is observed at the plasma size of 3 μm with field emission under diversified neutral gas pressure.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    F. Iza, G.J. Kim, S.M. Lee, J.K. Lee, J.L. Walsh, Y.T. Zhang, M. Kong, Plasma Proc. Polymers 5, 322 (2008)CrossRefGoogle Scholar
  2. 2.
    X. Lu, G.V. Naidis, M. Laroussi, S. Reuter, D.B. Graves, K. Ostrikov, Physics Reports 630, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Dobrynin, G. Fridman, G. Friedman, A. Fridman, New J. Phys. 11, 115020 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Kang, P.Y. Kim, I.G. Koo, H.Y. Kim, J.C. Jung, M.Y. Choi, J.K. Lee, G.J. Collins, Plasma Proc. Polymers 9, 446 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Isbary, W. Stolz, T. Shimizu, R. Monetti, W. Bunk, H.-U. Schmidt, G.E. Morfill, T.G. Klämpfl, B. Steffes, H.M. Thomas, J. Heinlin, S. Karrer, M. Landthaler, J.L. Zimmermann, Clinical Plasma Medicine 1, 25 (2013)CrossRefGoogle Scholar
  6. 6.
    K.H. Schoenbach, K. Becker, Eur. Phys. J. D 70, 29 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    F. Iza, J.K. Lee, M.G. Kong, Phys. Rev. Lett. 99, 075004 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    J. Choi, F. Iza, H.J. Do, J.K. Lee, M.H. Cho, Plasma Sources Sci. Technol. 82, 025029 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J.L. Walsh, F. Iza, N.B. Janson, V.J. Law, M.G. Kong, J. Phys. D: Appl. Phys. 43, 075201 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    J. Gregorio, A.R. Hoskinson, J. Hopwood, J. Appl. Phys. 118, 083305 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M. Radmilović-Radjenović, J.K. Lee, Phys. Plasmas 12, 063501 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    V. Lisovskiy, J.-P. Booth, K. Landry, D. Douai, V. Cassagne, V. Yegorenkov, Europhys. Lett. 82, 15001 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    K. McKay, F. Iza, M.G. Kong, Eur. Phys. J. D 60, 497 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    H.C. Kwon, I.H. Won, J.K. Lee, Appl. Phys. Lett. 100, 183702 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    I. Korolov, Z. Donko, Phys. Plasmas 22, 093501 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    M.U. Lee, S.Y. Jeong, I.H. Won, S.K. Sung, J.K. Lee, G.S. Yun, Phys. Plasmas 23, 070704 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    M.U. Lee, J. Lee, J.K. Lee, G.S. Yun, Plasma Sources Sci. Technol. 26, 034003 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    F.L. Jones, G.C. Williams, Proc. Phys. Soc. B 64, 560 (1951)ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Verboncoeur, A.B. Langdon, N.T. Gladd, Comput. Phys. Commun. 87, 199 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    H.C. Kim, F. Iza, S.S. Yang, M. Radmilović-Radjenović, J.K. Lee, J. Phys. D: Appl. Phys. 38, R283 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    M. Hayashi, S. Ushiroda, J. Chem. Phys. 78, 2621 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    M.A. Herlin, S.C. Brown, Phys. Rev. 74, 291 (1948)ADSCrossRefGoogle Scholar
  23. 23.
    T. Kihara, Rev. Mod. Phys. 24, 45 (1952)ADSCrossRefGoogle Scholar
  24. 24.
    G. Chen, L.L. Raja, J. Appl. Phys. 96, 6073 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    H. Margenau, Phys. Rev. 69, 508 (1946)ADSCrossRefGoogle Scholar
  26. 26.
    R.H. Fowler, L. Nordheim, Proc. Phys. Soc. A 119, 173 (1928)CrossRefGoogle Scholar
  27. 27.
    W.S. Boyle, P. Kisliuk, Phys. Rev. 97, 255 (1955)ADSCrossRefGoogle Scholar
  28. 28.
    A. Garscadden, Atmospheric Pressure Glow Discharges in “Low Temperature Plasmas”,edited by by R. Hippler, H. Kersten, M. Schmidt, K.H. Schoenbach, (Wiley-VCH, 2008), Vol. 2, p. 411 Google Scholar
  29. 29.
    Plasma Module User’s Guide, COMSOL Multiphysics® v. 5.2. www.comsol.com. COMSOL AB, Stockholm, Sweden (2013)Google Scholar
  30. 30.
    P. Rumbach, D.B. Go, J. Phys. D: Appl. Phys. 112, 103302 (2012)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Division of Advanced Nuclear Engineering, Pohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Department of PhysicsPohang University of Science and TechnologyPohangRepublic of Korea
  3. 3.Center for Attosecond Science, Max Planck POSTECH/Korea Research Initiative (MPK)PohangRepublic of Korea

Personalised recommendations