Wake potential in 2-D magnetized complex plasma

  • Pratikshya BezbaruahEmail author
  • Nilakshi Das
Regular Article


Analytical expression for wake potential is obtained in a 2-D magnetized complex plasma using Linear Response Theory. The dynamics of the system is explored at moderate to relatively high magnetic field limit. A 2-D expression for wake potential is obtained and the variation in the strength of the wake potential is explored at different magnetic fields in moderate regime and for ion flow speed in supersonic regime. The theory also facilitates the understanding on the nature of wake potential in relatively high magnetic field limit. Molecular Dynamics simulation is performed to see the role of wake potential developed in this paper on governing the structural property of strongly coupled dusty plasma in presence of moderate to relatively strong magnetic field.

Graphical abstract


Plasma Physics 


  1. 1.
    R.L. Merlino, A. Barkan, C. Thompson, N.D. Angelo, Phys. Plasmas 5, 1607 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    E. Thomas, R.L. Merlino, M. Rosenberg, Plasma Phys. Control. Fusion 54, 124034 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov, Physics Uspekhi 47, 447 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S. Bhattacharjee, N. Das, Phys. Plasmas 19, 103707 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    T. Ott, M. Bonitz, Phys. Rev. Lett. 107, 135003 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Bonitz, H. Kählert, T. Ott, H. Löwen, Plasma Sources Sci. Technol. 22, 015007 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    M. Nambu, M. Salimullah, R. Bingham, Phys. Rev. E 63, 056403 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    M. Salimullah, P.K. Shukla, M. Nambu, H. Nitta, O. Ishihara, A.M. Rizwan, Phys. Plasmas 10, 3047 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    S. Bhattacharjee, N. Das, Eur. Phys. J. D 68, 184 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    P. Ludwig, H. Kählert, M. Bonitz, Plasma Phys. Control. Fusion 54, 045011 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    M. Schwabe, U. Konopka, P. Bandyopadhyay, G.E. Morfill, Phys. Rev. Lett. 106, 215004 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    E. Thomas, A.M. DuBois, B. Lynch, S. Adams, R. Fisher, D. Artis, S. LeBlanc, U. Konopka, R.L. Merlino, M. Rosenberg, J. Plasma Phys. 80, 803 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    J. Winter, Phys. Plasmas. 7, 3862 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    J. Carstensen, F. Greiner, A. Piel, Phys. Rev. Lett. 109, 135001 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M.E. Koepke, N. Sato, New. J. Phys. 5, 42 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    E. Thomas, B. Lynch, U. Konopka, R.L. Merlino, M. Rosenberg, Phys. Plasmas. 22, 030701 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    D. Samsonov, S. Zhdanov, G. Morfill, V. Steinberg, New J. Phys. 5, 24 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    J.-P. Joost, P. Ludwig, H. Kählert, C. Arran, M. Bonitz, Plasma Phys. Control. Fusion 57, 025004 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    T. Ott, H. Löwen, M. Bonitz, Phys. Rev. E 89, 013105 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    L. Nasi, J.L. Raimbault, Phys. Plasmas 17, 113513 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Khrapak, B.A. Klumov, G.E. Morfill, Phys. Rev. Lett. 100, 225003 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D.S. Lemons, M.S. Murillo, W. Daughton, D. Winske, Phys. Plasmas. 7, 2306 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsTezpur UniversityAssamIndia

Personalised recommendations