Single and double over-barrier ionization of He, He+ and Ne system by positron impact

  • Aixiang Yang
  • Ning Zhang
  • Binghui Zhu
  • Xianrong Zou
  • Ximeng Chen
  • Jianxiong ShaoEmail author
Regular Article


The classical over-barrier ionization model (COBI) method and trajectory calculations were utilized to simulate the ionization of He+ impacted by a positron. The calculated ionization cross sections of He+ agree with other theoretical data. Additionally, we found that the double ionization of He has a definite association with the positron-He+ impact. This result can explain why doubly ionized He seemed to be positron-scattered by the rest of the He+ in our previous study. The COBI model was also extended to study the double ionization caused by positron-Ne impacts. Our theoretical results agree with the experimental data.

Graphical abstract


Molecular Physics and Chemical Physics 


  1. 1.
    C.C. Montanari, J.E. Miraglia, J. Phys.: Conf. Ser. L 583, 012018 (2015)Google Scholar
  2. 2.
    G. Laricchia, D.A. Cooke, A. Kover, S.J. Brawley, Experimental Aspects of Ionization Studies by Positron, Positronium Impact (Cambridge University Press, 2013), Vol. 56, pp. 116–136Google Scholar
  3. 3.
    R.J. Drachman, Nucl. Instrum. Methods Phys. Res. Sec. B 143, 1 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    D.A. Cooke, D.J. Murtagh, G. Laricchia, Phys. Rev. Lett. 104, 073201 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    D.A. Cooke, D.J. Murtagh, A. Kover, G. Laricchia, Nucl. Instrum. Methods Phys. Res. Sec. B 266, 466 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    D. Fromme, G. Kruse, W. Raith, G. Sinapius, Phys. Rev. Lett. 57, 3031 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    F.M. Jacobsen, N.P. Frandsen, H. Knudsen, U. Mikkelsen, D.M. Schrader, J. Phys. B: At. Mol. Opt. Phys. 28, 4691 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    J. Moxom, D.M. Schrader, G. Laricchia, Jun Xu, L.D. Hulett, Phys. Rev. A 60, 2940 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    J. Moxom, G. Laricchia, M. Charlton, J. Phys. B: At. Mol. Opt. Phys. 28, 1331 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    H. Bluhme, H. Knudsen, J.P. Merrison, M.R. Poulsen, Phys. Rev. Lett. 81, 73 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J. Moxom, J. Phys. B: At. Mol. Phys. 33, 481 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    R.E. Olson, Phys. Rev. A 36, 1519 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    D.R. Schultz, R.E. Olson, Phys. Rev. A 38, 1866 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    A.S. Kheifets, Phys. Rev. A 69, 032712 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    N. Simonovic, D. Lukic, P. Grujc, J. Phys. B: At. Mol. Opt. Phys. 38, 3147 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Basu, P.S. Mazumdar, A.S. Ghosh, Phys. B: At. Mol. Opt. Phys. 18, 369 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    K.L. Baluja, A. Jain, Phys. Rev. A 46, 1279 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Chen, A.Z. Msezanem, Phys. Rev. A 49, 1752 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    C. Dal. Cappello, A. Haddadou, F. Menas, A.C. Roy, J. Phys. B: At. Mol. Opt. Phys. 44, 015204 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J.X. Shao, X.M. Chen, Z.Y. Liu, R. Qi, X.R. Zou, Phys. Rev. A 77, 042711 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A.X. Yang, X.R. Zou, C.N. Lin, W.B. Liu, S.T. Niu, X.M. Chen, J.X. Shao, Phys. Rev. A 91, 022701 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    C.C. Montanari, J.E. Miraglia, J. Phys. B: At. Mol. Phys. 48, 165203 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    M. Zhou, X.R. Zou, S.Y. Wang, C. Cheng, W. Zhou, X. Ma, J.X. Shao, X.M. Chen, Laser, Particle Beams 31, 561 (2013)CrossRefGoogle Scholar
  24. 24.
    N. Bohr, J. Lindhard, K. Dan Vidensk. Selsk. Mat. Fys. Medd. 28, 7 (1954)Google Scholar
  25. 25.
    J.C. Slater, Phys. Rev. 36, 57 (1930)ADSCrossRefGoogle Scholar
  26. 26.
    A. Niehaus, J. Phys. B 19, 2925 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    E. Everhart, G. Stone, R.J. Carbone, Phys. Rev. 99, 1287 (1955)ADSCrossRefGoogle Scholar
  28. 28.
    N. Bohr, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 18, 8 (1948)Google Scholar
  29. 29.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, Florida, 2003); Section 10, Atomic, Molecular, and Optical Physics; Ionization Potentials of Atoms and Atomic IonsGoogle Scholar
  30. 30.
    A. Barany, G. Astner, H. Cederquist, H. Danared, S. Huldt, P. Hvelplund, A. Johnson, H. Knudsen, L. Liljeby, K.G. Rensfelt, Nucl. Instrum. Methods Phys. Res. Sec. B 9, 397 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    A.E. Wetmore, R.E. Olson, Phys. Rev. A 34, 2822 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    K. Rinn, F. Melchert, K. Rink, E. Salzborn, J. Phys. B: At. Mol. Phys. 19, 3717 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    R.E. Olson, J. Phys. B: At. Mol. Phys. 11, L227 (1978)ADSCrossRefGoogle Scholar
  34. 34.
    H. Berg, J. Ullrich, E. Bernstein, M. Unverzagt, L. Spielberget, J. Euler, D. Schardt, O. Jagutzki, H. Schmidt-Bocking, R. Mann, P.H. Mokler, S. Hagmann, P.D. Fainstein, J. Phys. B: At. Mol. Opt. Phys. 25, 3655 (1992)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Aixiang Yang
    • 1
  • Ning Zhang
    • 1
  • Binghui Zhu
    • 1
  • Xianrong Zou
    • 1
  • Ximeng Chen
    • 1
  • Jianxiong Shao
    • 1
    Email author
  1. 1.School of Nuclear Science and Technology, Lanzhou UniversityLanzhouP.R. China

Personalised recommendations