Skip to main content
Log in

On the plasma confinement by acoustic resonance

An innovation for electrodeless high-pressure discharge lamps

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In an applied research project on the development of a pulsed microwave sulfur lamp prototype of 1 kW, we have discovered an amazing phenomenon in which the plasma forms a ball staying at the center of the bulb despite gravity, thus protecting the glass from melting. In this paper, it is shown that this results from an acoustic resonance in a spherical mode. Measurements of the plasma response to short pulses are presented showing beats at the spherical resonance. It is demonstrated that the beats could result from the simultaneous excitation of two normal modes with a frequency difference of approximately 1%. One of the two frequencies matches precisely the microwave pulses repetition, a little below 30 kHz. Thus this one is due to a forced oscillation, whereas the other one is due to a free oscillation. The phase velocity of sound was calculated as a function of temperature in order to find the series of temperatures at which a resonance would occur if the bulb were an isothermal solid sphere. The mean temperature inside the actual bulb was determined from the only doublet of this series, that has characteristic frequencies close enough to cause the observed beats. In addition, one of these two modes has a spherical symmetry that can explain the plasma ball formation. The obtained mean temperature is consistent with the direct measurements on the bulb surface as well as with the temperature in the core of a similar plasma found in the literature. We have also proposed a model of the resonance onset based on the acoustic dispersion and the sound amplification due to electromagnetic coupling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics, Vol. Kinetics (Springer, 2016), p. 228

  2. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), pp. 185–186

  3. C.W. Johnston, Ph.D. thesis, Technische Universiteit Eindhoven, 2003, p. 14

  4. C.W. Johnston, Ph.D. thesis, Technische Universiteit Eindhoven, 2003, p. 15

  5. H.W.P. van der Heijden, J.J.A.M. van der Mullen, J. Phys. B: At. Mol. Opt. Phys. 34, 4183 (2001)

    Article  ADS  Google Scholar 

  6. M.G. Ury, C.H. Wood, J.T. Dolan, Lamp including sulfur, USA Patent no. 5,404,076, 1995

  7. G. Courret, L. Calame, M. Croci, P. Egolf, A. Meyer, in Proceedings of the 14 Schweizerisches Status-Seminar Energie- und Umweltforschung im Bauwesen (Zurich, Switzerland, 2006), p. 5

  8. A. Meyer, G. Courret, M. Croci, Plasma lamp with means to generate in its bulb a resonant ultrasound wave, Patent pending EP 1876633 A1

  9. G. Courret, L. Calame, J. Croisier, M. Croci, A. Meyer, in Proceedings of the 15. Schweizerisches Status-Seminar Energie- und Umweltforschung im Bauwesen (Zurich, Switzerland, 2008), p. 4

  10. G. Courret, L. Calame, J. Croisier, M. Croci, A. Meyer, in Proceedings of the 15. Schweizerisches Status-Seminar Energie- und Umweltforschung im Bauwesen (Zurich, Switzerland, 2008), p. 7

  11. S. Gavin, M. Carpita, G. Courret, in Proceedings of the 16th Conference on Power Electronics and Applications (EPE14-ECCE Europe, Lappenranta, Finland, 2014)

  12. C.W. Johnston, H.W.P. van der Heijden, A. Hartgers, K. Garloff, J. van Dijk, J.J.A.M. van der Mullen, J. Phys. D: Appl. Phys. 37, 211 (2004)

    Article  ADS  Google Scholar 

  13. G. Courret, L. Calame, J. Croisier, M. Croci, A. Meyer, in Proceedings of the 15. Schweizerisches Status-Seminar Energie- und Umweltforschung im Bauwesen (Zurich, Switzerland, 2008), pp. 3–4

  14. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), pp. 97–99

  15. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), pp.  100–101

  16. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), pp.  257–261

  17. G. Colonna, V. Laporta, R. Celiberto, M. Capitelli, J. Tennyson, Plasma Sources Sci. Technol. 24, 035004 (2015)

    Article  ADS  Google Scholar 

  18. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, USA, 1968), p. 785

  19. L.D. Pietanza, G. Colonna, G. D’Ammando, M. Capitelli, Plasma Phys. Controll. Fusion 59, 014035 (2017)

    Article  ADS  Google Scholar 

  20. M. Capitelli, G. Colonna, G. D’Ammando, K. Hassouni, A. Laricchiuta, L.D. Pietanza, Plasma Process. Polym. 14, 1600109 (2017)

    Article  Google Scholar 

  21. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), pp. 116–120

  22. C. D’Ammando, G. Colonna, M. Capitelli, A. Laricchiuta, Phys. Plasmas 22, 034501 (2015)

    Article  ADS  Google Scholar 

  23. G. Colonna, C. D’Ammando, L.D. Pietanza, Plasma Sources Sci. Technol. 25, 054001 (2016)

    Article  ADS  Google Scholar 

  24. C.W. Johnston, J.J.A.M. van der Mullen, J. Phys. D: Appl. Phys. 37, 573 (2004)

    Article  ADS  Google Scholar 

  25. M. Capitelli, G. Colonna, C. D’Ammando, V. Laporta, A. Laricchiuta, Chem. Phys. 438, 31 (2014)

    Article  ADS  Google Scholar 

  26. J.D. Anderson Jr., Hypersonic and High-Temperature Gas Dynamics, 2nd edn. (AIAA Education Series, USA, 2006), p. 583

  27. J.D. Anderson Jr., Hypersonic and High-Temperature Gas Dynamics, 2nd edn. (AIAA Education Series, USA, 2006), p. 584

  28. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), p. 118

  29. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (A Wiley-Interscience Publication, USA, 1990), p. 58

  30. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, USA, 1968), p. 781

  31. H. Rau, T.R.N. Kutty, J.R.F. Guedes de Carvalho, J. Chem. Thermodyn. 5, 291 (1973)

    Article  Google Scholar 

  32. B. Meyer, Chem. Rev. 76, 367 (1976)

    Article  Google Scholar 

  33. M. Capitelli, G. Colonna, A. D’Angola, Fundamental Aspects of Plasma Chemical Physics, Vol. Thermodynamics (Springer, 2012), p. 26

  34. M. Capitelli, G. Colonna, A. D’Angola, Fundamental Aspects of Plasma Chemical Physics, Vol. Thermodynamics (Springer, 2012), p. 28

  35. W. Massey, Electronic and Ionic Impact Phenomena, Vol. III: Slow Collisions of Heavy Particles (Oxford University Press, UK, 1971), p. 1467

  36. M. Capitelli, G. Colonna, A. D’Angola, Fundamental Aspects of Plasma Chemical Physics, Vol. Thermodynamics (Springer, 2012), p. 8

  37. M.A. Reno, B.J. McBride, S. Gordon, Coefficients for calculating thermodynamic and transport properties of individual species, Technical report, NASA, 1993

  38. L. Landau, E. Lifchitz, Physique Statistique (Editions Mir, Russia, 1994), p. 337

  39. C.W. Johnston, Ph.D. thesis, Technische Universiteit Eindhoven, 2003, p. 22

  40. G. Courret, L. Calame, M. Croci, P. Egolf, A. Meyer, in Proceedings of the 14. Schweizerisches Status-Seminar Energie- und Umweltforschung im Bauwesen (Zurich, Switzerland, 2006), p. 7

  41. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, USA, 1968), p. 786

  42. M. Capitelli, G. Colonna, A. D’Angola, Fundamental Aspects of Plasma Chemical Physics, Vol. Thermodynamics (Springer, 2012), pp. 22–25

  43. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, USA, 1968), pp. 790–791

  44. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, USA, 1968), p. 787

  45. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamental of Acoustics, 4th edn. (John Wiley & Sons, Inc., USA, 2000), pp. 250–252

  46. C.W. Johnston, J. Jonkers, J.J.A.M. van der Mullen, J. Phys. D: Appl. Phys. 35, 2578 (2002)

    Article  ADS  Google Scholar 

  47. M.S. Cramer, Phys. Fluids 24, 066102 (2012)

    Article  ADS  Google Scholar 

  48. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, USA, 1968), p. 788

  49. W. Massey, Electronic and Ionic Impact Phenomena, Vol. III: Slow Collisions of Heavy Particles (Oxford University Press, UK, 1971), p. 1468

  50. J.D. Anderson Jr., Hypersonic and High-Temperature Gas Dynamics, 2nd edn. (AIAA Education Series, USA, 2006), p. 480

  51. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (A Wiley-Interscience Publication, USA, 1990), pp. 18–25

  52. E.G. Leksina, E.A. Mukhina, Yu.V. Pavlov, R.M. Umarkhodzhaev, O.M. Vokhnik, A.N. Kozlov, Phys. Vibrat. 8, 158 (2000)

    Google Scholar 

  53. T.H. McGee, R.E. Weston, J. Chem. Phys. Lett. 47, 352 (1977)

    Article  ADS  Google Scholar 

  54. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), p. 77

  55. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), p. 424

  56. G. Courret, L. Calame, M. Croci, P. Egolf, A. Meyer, in Proceedings of the 14 Schweizerisches Status-Seminar Energie- und Umweltforschung im Bauwesen (Zurich, Switzerland, 2006), p. 6

  57. D.A. Peterson, L.A. Schlie, J. Chem. Phys. 73, 1551 (1980)

    Article  ADS  Google Scholar 

  58. H. van der Heijden, J. van der Mullen, J. Baier, A. Krber, J. Phys. B: At. Mol. Opt. Phys. 35, 3633 (2002)

    Article  ADS  Google Scholar 

  59. M.I. Boulos,  P. Fauchais, E. Pfender, Thermal Plasma, Vol. I: Fundamentals and Applications (Springer, 1994), p. 377

  60. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, USA, 2011), pp.  427–429

  61. M. Capitelli, G. Colonna, A. D’Angola, Fundamental Aspects of Plasma Chemical Physics, Vol. Thermodynamics (Springer, 2012), p. 6

  62. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (A Wiley-Interscience Publication, USA, 1990), p. 14

  63. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamental of Acoustics, 4th edn. (John Wiley & Sons, Inc., USA, 2000), p. 119

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Courret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courret, G., Nikkola, P., Wasterlain, S. et al. On the plasma confinement by acoustic resonance. Eur. Phys. J. D 71, 214 (2017). https://doi.org/10.1140/epjd/e2017-70490-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70490-6

Keywords

Navigation