Advertisement

Electronic energy loss of protons and deuterons in multi-walled carbon nanotubes

  • Carlos E. CeledónEmail author
  • Andrea Cortés
  • Esteban A. Sánchez
  • M. Sergio Moreno
  • Juan David Uribe
  • Nestor R. Arista
  • Jorge E. Valdés
Regular Article

Abstract

Results of measurements of electronic energy loss for few keV protons and deuterons interacting with multi-walled carbon nanotubes are presented. Analyses of the energy loss distributions, for both type of ions, show a particular shape which is due to the cylindrical geometry of the nanotubes. These distributions can be explained in detail by a Monte Carlo simulation program that includes elastic and inelastic processes and the geometrical properties of the nanotubes. The electronic energy loss values obtained from this study are proportional to the ion velocity, but are lower than the corresponding values for amorphous carbon. This indicates that the ion-nanotube interaction is affected by the electronic and crystalline structure of the nanotubes. Comparisons with experimental values for different types of C targets and with recent theoretical calculations were also done.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    D.Y. Lee, C.Y. Shin, S.J. Yoon, H.Y. Lee, W. Lee, N.K. Shrestha, J.K. Lee, S.H. Han, Sci. Rep. 4, 3930 (2014) ADSCrossRefGoogle Scholar
  2. 2.
    E.V. Santiago, S.H. López, M.A. Camacho López, D.R. Contreras, R. Farías-Mancilla, S.G. Flores-Gallardo, Opt. Laser Technol. 84, 53 (2016) ADSCrossRefGoogle Scholar
  3. 3.
    C.P. Firme, P.R. Bandaru, Nanomedicine 6, 245 (2010) CrossRefGoogle Scholar
  4. 4.
    H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, C. Pham-Huy, Biomed Res. Int. 2013, 578290 (2013) Google Scholar
  5. 5.
    S. Pramanik, R. Konwarh, N. Barua, A.K. Buragohain, N. Karak, Biomater. Sci. 2, 192 (2014) CrossRefGoogle Scholar
  6. 6.
    Z.L. Mišković, J. Phys. Conf. Ser. 133, 012011 (2008) CrossRefGoogle Scholar
  7. 7.
    W.K. Hong, C. Lee, D. Nepal, K.E. Geckeler, K. Shin, T. Lee, Nanotechnology 17, 5675 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    B. Khare, M. Meyyappan, M.H. Moore, P. Wilhite, H. Imanaka, B. Chen, Nano Lett. 3, 643 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    V.A. Basiuk, K. Kobayashi, T. Kaneko, Y. Negishi, E.V. Basiuk, J.M. Saniger-Blesa, Nano Lett. 2, 789 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    P.J. Boul, K. Turner, J. Li, M.X. Pulikkathara, R.C. Dwivedi, E.D. Sosa, Y. Lu, O.V. Kuznetsov, P. Moloney, R. Wilkins, M.J. O’Rourke, V.N. Khabashesku, S. Arepalli, L. Yowell, J. Phys. Chem. C 113, 14467 (2009) CrossRefGoogle Scholar
  11. 11.
    A.V. Krasheninnikov, F. Banhart, Nat. Mater. 6, 723 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    J.E. Valdés, C. Celedón, R. Segura, I. Abril, R. Garcia-Molina, C.D. Denton, N.R. Arista, P. Vargas, Carbon 52, 137 (2013) CrossRefGoogle Scholar
  13. 13.
    C. Celedón, E.A. Sánchez, M.S. Moreno, N.R. Arista, J.D. Uribe, M. Mery, J.E. Valdés, P. Vargas, Phys. Rev. A 88, 012903 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    R. Lavin, J.C. Denardin, J. Escrig, D. Altbir, A. Cortes, H. Gomez, J. Appl. Phys. 106, 103903 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    A. Cortés, R. Lavín, J.C. Denardin, R.E. Marotti, E.A. Dalchiele, P. Valdivia, H. Gómez, J. Nanosci. Nanotechnol. 11, 3899 (2011) CrossRefGoogle Scholar
  16. 16.
    D.K. Singh, P. Iyer, P. Giri, Diam. Relat. Mater. 19, 1281 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    J. Eckardt, G. Lantschner, M. Jakas, V. Ponce, Nucl. Instrum. Methods Phys. Res. B 2, 168 (1984) ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Valdés, G. Tamayo, G. Lantschner, J. Eckardt, N. Arista, Nucl. Instrum. Methods Phys. Res. B 73, 313 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    P. Echenique, R. Nieminen, R. Ritchie, Solid State Commun. 37, 779 (1981) ADSCrossRefGoogle Scholar
  20. 20.
    M. Puska, R. Nieminen, Phys. Rev. B 27, 6121 (1983) ADSCrossRefGoogle Scholar
  21. 21.
    D. Isaacson, Compilation of r s values (Tech. rep., New York University, 1975) Google Scholar
  22. 22.
    P.M. Ajayan, S. Iijima, T. Ichihashi, Phys. Rev. B 47, 6859 (1993) ADSCrossRefGoogle Scholar
  23. 23.
    L.A. Bursill, P.A. Stadelmann, J.L. Peng, S. Prawer, Phys. Rev. B 49, 2882 (1994) ADSCrossRefGoogle Scholar
  24. 24.
    M. Kociak, L. Henrard, O. Stéphan, K. Suenaga, C. Colliex, Phys. Rev. B 61, 13936 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    A. Seepujak, U. Bangert, A.J. Harvey, P.M.F.J. Costa, M.L.H. Green, Phys. Rev. B 74, 075402 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    M. Upton, R. Klie, J. Hill, T. Gog, D. Casa, W. Ku, Y. Zhu, M. Sfeir, J. Misewich, G. Eres, D. Lowndes, Carbon 47, 162 (2009) CrossRefGoogle Scholar
  27. 27.
    W. Möller, G. Pospiech, G. Schrieder, Nucl. Instrum. Methods 130, 265 (1975) ADSCrossRefGoogle Scholar
  28. 28.
    M. Famá, J. Eckardt, G. Lantschner, N. Arista, Phys. Rev. A 62, 062901 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions (Cambridge University Press, 1996) Google Scholar
  30. 30.
    E.D. Cantero, G.H. Lantschner, N.R. Arista, Eur. Phys. J. D 65, 397 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    A. Ojanperä, A.V. Krasheninnikov, M. Puska, Phys. Rev. B 89, 035120 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Pearce, J. Appl. Phys. 52, 5056 (1981) ADSCrossRefGoogle Scholar
  33. 33.
    S.D. Softky, Phys. Rev. 123, 1685 (1961) ADSCrossRefGoogle Scholar
  34. 34.
    N. Sakamoto, H. Ogawa, N. Shiomi-Tsuda, Nucl. Instrum. Methods Phys. Res. B 115, 84 (1996) ADSCrossRefGoogle Scholar
  35. 35.
    W. Käferböck, W. Rössler, V. Necas, P. Bauer, M. Peñalba, E. Zarate, A. Arnau, Phys. Rev. B 55, 13275 (1997) ADSCrossRefGoogle Scholar
  36. 36.
    P. de Vera, I. Abril, R. Garcia-Molina, Appl. Radiat. Isot. 83, 122 (2014) CrossRefGoogle Scholar
  37. 37.
    J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219-220, 1027 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    E.P. Arkipov, Y.V. Gott, Soviet Phys. J. Exp. Theor. Phys. 29, 614 (1969) ADSGoogle Scholar
  39. 39.
    S.H. Overbury, P.F. Dittner, S. Datz, R.S. Thoe, Radiat. Eff. Defects Solids 41, 219 (1979) CrossRefGoogle Scholar
  40. 40.
    H.H. Andersen, A. Csete, T. Ichioka, H. Knudsen, S.P. Møller, U.I. Uggerhøj, Nucl. Instrum. Methods Phys. Res. B 194, 217 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    J.E. Valdés, G. Tamayo, G. Lantschner, J. Eckardt, N. Arista, Nucl. Instrum. Methods Phys. Res. B 73, 313 (1993) ADSCrossRefGoogle Scholar
  42. 42.
    E. Cantero, G. Lantschner, J. Eckardt, N. Arista, Phys. Rev. A 80, 032904 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    S. Markin, D. Primetzhofer, M. Spitz, P. Bauer, Phys. Rev. B 80, 205105 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    D. Goebl, D. Roth, P. Bauer, Phys. Rev. A 062903, 1 (2013) Google Scholar
  45. 45.
    C.E. Celedón, E.A. Sánchez, L. Salazar Alarcón, J. Guimpel, A. Cortés, P. Vargas, Nucl. Instrum. Methods Phys. Res. B 360, 103 (2015) ADSCrossRefGoogle Scholar
  46. 46.
    S. Bubin, B. Wang, S. Pantelides, K. Varga, Phys. Rev. B 85, 235435 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Carlos E. Celedón
    • 1
    • 2
    • 3
    Email author return OK on get
  • Andrea Cortés
    • 4
  • Esteban A. Sánchez
    • 2
    • 3
  • M. Sergio Moreno
    • 2
    • 3
  • Juan David Uribe
    • 1
  • Nestor R. Arista
    • 2
    • 3
  • Jorge E. Valdés
    • 1
  1. 1.Laboratorio de Colisiones Atómicas, Departamento de Física, Universidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Centro Atómico BarilocheSan Carlos de BarilocheArgentina
  3. 3.Instituto BalseiroSan Carlos de BarilocheArgentina
  4. 4.Departamento de Física, Facultad de Ciencias, Universidad Católica del NorteCasilla AntofagastaChile

Personalised recommendations