Advertisement

Magnets in an electric field: hidden forces and momentum conservation

  • Francis RedfernEmail author
Regular Article

Abstract

In 1967 Shockley and James addressed the situation of a magnet in an electric field. The magnet is at rest and contains electromagnetic momentum, but there was no obvious mechanical momentum to balance this for momentum conservation. They concluded that some sort of mechanical momentum, which they called “hidden momentum”, was contained in the magnet and ascribed this momentum to relativistic effects, a contention that was apparently confirmed by Coleman and Van Vleck. Since then, a magnetic dipole in an electric field has been considered to have this new form of momentum, but this view ignores the electromagnetic forces that arise when an electric field is applied to a magnet or a magnet is formed in an electric field. The electromagnetic forces result in the magnet-charge system gaining electromagnetic momentum and an equal and opposite amount of mechanical momentum so that it is moving in its original rest frame. This moving reference frame is erroneously taken to be the rest frame in studies that purport to show hidden momentum. Here I examine the analysis of Shockley and James and of Coleman and Van Vleck and consider a model of a magnetic dipole formed in a uniform electric field. These calculations show no hidden momentum.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    J.J. Thomson, Phil. Mag. 31, 149 (1891)CrossRefGoogle Scholar
  2. 2.
    J.J. Thomson, Phil. Mag. 8, 331 (1904)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    W. Shockley, R.P. James, Phys. Rev. Lett. 18, 876 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    S. Coleman, J.H.V. Vleck, Phys. Rev. 171, 1370 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    C.G. Darwin, Phil. Mag. 39, 537 (1920)CrossRefGoogle Scholar
  7. 7.
    D.J. Griffiths, Am. J. Phys. 80, 7 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    D. Babson et al., Am. J. Phys. 77, 826 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley & Sons, New York, 1999)Google Scholar
  10. 10.
    T.H. Boyer, Phys. Rev. E 91, 013201 (2015)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    W.H. Furry, Am. J. Phys. 37, 621 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    V. Hnizdo, Am. J. Phys. 65, 515 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    M. Planck, Phys. Z.S. 9, 828 (1909)Google Scholar
  14. 14.
    F.T. Trouton, H.R. Noble, Proc. R. Soc. 74, 132 (1903)CrossRefGoogle Scholar
  15. 15.
    M. von Laue, Verhandlungen der Deutschen Physikalischen Gesellschaft 13, 513i (1911)Google Scholar
  16. 16.
    F.R. Redfern, http://prism-redfern.org/physicsjournal/trouton-noble.pdf (2016), last accessed in January, 2017
  17. 17.
    T.H. Boyer, Am. J. Phys. 83, 433 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Reitz, F.J. Milford, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, Massachusetts, 1960)Google Scholar
  19. 19.
    T.H. Boyer, Phys. Rev. A 36, 5083 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Aharonov, P. Pearle, L. Vaidman, Phys. Rev. A 37, 4052 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    L. Vaidman, Am. J. Phys. 58, 978 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    M. Mansuripur, Phys. Rev. Lett. 108, 193901 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    V. Namias, Am. J. Phys. 57, 171 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    D. Bedford, P. Krumm, Am. J. Phys. 54, 1036 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    F.R. Redfern, Phys. Scr. 91, 045501 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Added in proof: It turns out that the effect of the vector potential is canceled by that of the scalar potential, but the conclusion concerning hidden momentum still holdsGoogle Scholar
  28. 28.
    A. Einstein, J. Laub, Ann. Phys. 331, 541 (1908)CrossRefGoogle Scholar
  29. 29.
    D.A.T. Vanzella, Phys. Rev. Lett. 110, 089401 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Barnett, Phys. Rev. Lett. 110, 089402 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    P.L. Saldanha, Phys. Rev. Lett. 110, 089403 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    M. Khorrami, Phys. Rev. Lett. 110, 089404 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    D.J. Griffiths, V. Hnizdo, Am. J. Phys. 81, 570 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    P.L. Saldanha, J.S.O. Filho, last accessed in January, 2017 (2016)Google Scholar
  35. 35.
    J.S.O. Filho, P.L. Saldanha, Phys. Rev. A 92, 052017 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    G. Spavieri, Eur. Phys. J. D 70, 263 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    W. Rindler, Relativity: Special, General, and Cosmological, 2nd edn. (Oxford University Press, Oxford, 2006)Google Scholar
  38. 38.
    F.R. Redfern, http://prism-redfern.org/physicsjournal/relofsimul.pdf (2016), last accessed in February, 2017
  39. 39.
    M. Mansuripur, Proc. SPIE 9548, 95480K,1 (2015)CrossRefGoogle Scholar
  40. 40.
    F.R. Redfern, http://prism-redfern.org/nohidden.pdf (2015), last accessed in January, 2017

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Texarkana CollegeTexarkanaUSA

Personalised recommendations