Electron excited multiply charged argon ions studied by means of an energy resolved electron-ion coincidence technique

  • Sunil Kumar
  • Suman Prajapati
  • Bhupendra Singh
  • Bhartendu Kumar Singh
  • Rama Shanker
Regular Article
  • 60 Downloads

Abstract

Multiply charged argon ions produced from decay of L-shell hole states by impact of a continuous beam of 3.5 keV electrons are studied for the first time using an energy resolved electron-ion coincidence technique. The TOF spectra of argon ions are measured in coincidence with 18-energy selected electrons emitted in a wide energy range (126–242 eV). The coincidence measurement between the energy selected electrons and the correlated ions specifies the individual decay channel for various multiply charged ions. New experimental data are obtained and reported on the correlation probability for production of argon ions with charge states 1+ to 4+ as a function of ejected electrons in the considered energy range. The relative correlation probability of producing different charge state ions and corresponding physical processes involved in their production are presented and discussed. It has been found that the maximum probability for production of Ar2+ ions correlated to ejected Auger electrons in the energy range of 205–209 eV is 100%. No theoretical predictions are available to compare with these results. The present study shows further that not only the auto-ionization and normal Auger transitions but also several other decay processes including Coster-Kronig transitions followed by Auger cascades with a fraction of shake process play important role in producing ions with charge states 1+ to 4+.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    M.O. Krause, T.A. Carlson, Phys. Rev. 158, 18 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    T. Tonuma, A. Yagishita, H. Shibata, T. Koizumi, T. Matsuo, K. Shima, T. Mukoyama, H. Tawara, J. Phys. B 20, L31 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Tamenori, K. Okada, S. Nagaoka, T. Ibuki, S. Tanimoto, Y. Shimizu, A. Fujii, Y. Haga, H. Yoshida, H. Ohashi, I.H. Suzuki, J. Phys. B 35, 314 (2002)CrossRefGoogle Scholar
  4. 4.
    N. Saito, I.H. Suzuki, J. Phys. B 25, 1785 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    T.A. Carlson, W.E. Hunt, M.O. Krause, Phys. Rev. 151, 41 (1966)ADSCrossRefGoogle Scholar
  6. 6.
    B. Adamczyk, J. Chem. Phys. 44, 4640 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. van der Wiel, T.M. El-Sherbini, L. Vriens, Physica 42, 411 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    S. Okudaira, Y. Kaneko, I. Kanomata, J. Phys. Soc. Jpn 28, 1536 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    T.M. El-Sherbini, M.J. Van der Wiel, F.J. de Heer, Physica 48, 157 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    R.K. Singh, R. Shanker, J. Phys. B 36, 1545 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    S. Mondal, R. Shanker, Phys. Rev. A 72, 052705 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    N. Saito, I.H. Suzuki, J. Electron Spectrosc. Relat. Phenomena 88-91, 65 (1998)CrossRefGoogle Scholar
  13. 13.
    J.C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R.T. Short, I.A. Sellin, D.W. Lindle, Phys. Rev. Lett. 65, 988 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    W. Eberhardt, S. Bernstorff, H.W. Jochims, S.B. Whitfield, B. Crasemann, Phys. Rev. A 38, 3808 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    G. Armen, J. Levin, I. Sellin, Phys. Rev. A 53, 772 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    D.V. Morgan, M. Sagurton, R.J. Bartlett, Phys. Rev. A 55, 1113 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    N. Saito, I.H. Suzuki, J. Phys. Soc. Jpn 66, 1979 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    B. Kammerling, B. Krassig, V. Schmidt, J. Phys. B 25, 3621 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    E. Shigemasa, T. Koizumi, Y. Itoh, T. Hayaishi, K. Okuno, A. Danjo, Y. Sato, A. Yagishita, Rev. Sci. Instrum. 63, 1505 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    R. Hippler, K. Saeed, A.J. Dumcan, H. Kleinpoppen, Phys. Rev. A 30, 3328 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    R.K. Singh, R. Hippler, R. Shanker, J. Phys. B 35, 3243 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    M.A. Chaudhry, A.J. Duncan, R. Hippler, H. Kleinpoppen, Phys. Rev. A 39, 530 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    R.K. Singh, S. Mondal, R. Shanker, J. Phys. B 36, 489 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    S. Mondal, R. Shanker, Phys. Rev. A 72, 062721 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    K. Bučar, M. Žitnik, Rad. Phys. Chem. 76, 487 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    H. Sambe, D.E. Ramaker, Chem. Phys. Lett. 128, 113 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    E. Krishnakumar, S.K. Srivastava, J. Phys. B 21, 1055 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    C. Ma, C.R. Sporleder, R.A. Bonham, Rev. Sci. Instrum. 62, 909 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    P. McCallion, M.B. Shah, H.B. Gilbody, J. Phys. B 25, 1061 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    D.P. Almeida, A.C. Fontes, I.S. Mattos, C.L. Godinho, J. Electron Spectrosc. Relat. Phenomena 67, 503 (1994)CrossRefGoogle Scholar
  31. 31.
    S. Brünken, C. Gerth, B. Kanngießer, T. Luhmann, M. Richter, P. Zimmermann, Phys. Rev. A 65, 042708 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    F. Von Busch, J. Doppelfeld, U. Alkemper, U. Kuetgens, S. Fritzsche, 93, 127 (1998)Google Scholar
  33. 33.
    U. Alkemper, J. Doppelfeld, F. von Busch, Phys. Rev. A 56, 2741 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    S. Ricz, Á. Kövér, M. Jurvansuu, D. Varga, J. Molnár, S. Aksela, Phys. Rev. A 65, 042707 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    P. Lablanquie, S.-M. Huttula, M. Huttula, L. Andric, J. Palaudoux, J.H.D. Eland, Y. Hikosaka, E. Shigemasa, K. Ito, F. Penent, Phys. Chem. Chem. Phys. 13, 18355 (2011)CrossRefGoogle Scholar
  36. 36.
    P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J.H.D. Eland, F. Penent, J. Electron Spectrosc. Relat. Phenomena 156-158, 51 (2007)CrossRefGoogle Scholar
  37. 37.
    W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)ADSCrossRefGoogle Scholar
  38. 38.
    http://www.roentdek.com/, RoentDek Handels GmbH (n.d.)
  39. 39.
    L.O. Werme, T. Bergmark, K. Siegbahn, Physica Scripta 8, 149 (1973)ADSCrossRefGoogle Scholar
  40. 40.
    W. Lotz, J. Opt. Soc. Am. 58, 915 (1968)CrossRefGoogle Scholar
  41. 41.
    F.P. Larkins, J. Phys. B 4, 14 (1971)ADSCrossRefGoogle Scholar
  42. 42.
    J.A.R. Samson, W.C. Stolte, Z.X. He, J.N. Cutler, D. Hansen, Phys. Rev. A 54, 2099 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    T. Kylli, H. Aksela, O.-P. Sairanen, A. Hiltunen, S. Aksela, J. Phys. B 30, 3647 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    M.Y. Amusia, M.Y. Kuchiev, S.A. Sheinerman, S.I. Sheftel, J. Phys. B 10, L535 (1977)ADSCrossRefGoogle Scholar
  45. 45.
    F. Von Busch, U. Kuetgens, J. Doppelfeld, S. Fritzsche, Phys. Rev. A 59, 2030 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    A. Hiltunen, T. Kylli, J. Mursu, O.-P. Sairanen, H. Aksela, S. Aksela, J. Electron Spectrosc. Relat. Phenomena 87, 203 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sunil Kumar
    • 1
  • Suman Prajapati
    • 1
  • Bhupendra Singh
    • 1
  • Bhartendu Kumar Singh
    • 1
  • Rama Shanker
    • 1
  1. 1.Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations