Advertisement

Quantum Monte Carlo study of the Rabi-Hubbard model

  • Thibaut Flottat
  • Frédéric HébertEmail author
  • Valéry G. Rousseau
  • George Ghassan Batrouni
Regular Article

Abstract

We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of a one dimensional Rabi-Hubbard model. The model consists of a lattice of Rabi systems coupled by a photon hopping term between near neighbor sites. For large enough coupling between photons and atoms, the phase diagram generally consists of only two phases: a coherent phase and a compressible incoherent one separated by a quantum phase transition (QPT). We show that, as one goes deeper in the coherent phase, the system becomes unstable exhibiting a divergence of the number of photons. The Mott phases which are present in the Jaynes-Cummings-Hubbard model are not observed in these cases due to the presence of non-negligible counter-rotating terms. We show that these two models become equivalent only when the detuning is negative and large enough, or if the counter-rotating terms are small enough

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    R.J. Schoelkopf, S.M. Girvin, Nature 451, 664 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    S. Haroche, J.M. Raymond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, 2006)Google Scholar
  4. 4.
    A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89109 (1963)CrossRefGoogle Scholar
  6. 6.
    K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2, 856 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Hartmann, F. Brandao, M.B. Plenio, Nat. Phys. 2, 849 (2006)CrossRefGoogle Scholar
  9. 9.
    D. Rossini, R. Fazio, Phys. Rev. Lett. 99, 186401 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J. Koch, K. Le Hur, Phys. Rev. A 80, 023811 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Hartmann, F.G.L.S. Brandao, M.B. Plenio, Laser Photon. Rev. 2, 527 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Schmidt, G. Blatter, Phys. Rev. Lett. 103, 086403, (2009)ADSCrossRefGoogle Scholar
  13. 13.
    J. Zhao, A.W. Sandvik, K. Ueda, arXiv:0806.3603 [cond-mat.other] (2008)
  14. 14.
    A. Tomadin, V. Giovannetti, R. Fazio, D. Gerace, I. Carusotto, H.E. Türeci, A. Imamoglu, Phys. Rev. A 81, 061801(R) (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A. Tomadin, V. Giovannetti, R. Fazio, D. Gerace, I. Carusotto, H.E. Türeci, A. Imamoglu, Phys. Rev. A 82, 019901 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    I. Carusotto, C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    I.I. Rabi, Phys. Rev. 49, 324 (1936)ADSCrossRefGoogle Scholar
  18. 18.
    I.I. Rabi, Phys. Rev. 51, 652 (1937)ADSCrossRefGoogle Scholar
  19. 19.
    Hang Zheng, Yasutami Takada, Phys. Rev. A 84, 043819 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Schiró, M. Bordyuh, B. Öztop, H.E. Türeci, Phys. Rev. Lett. 109, 053601 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Schiró, M. Bordyuh, B. Öztop, H.E. Türeci, J. Phys. B 46, 224021 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    B. Kumar, S. Jalal, Phys. Rev. A 88, 011802(R) (2013)ADSCrossRefGoogle Scholar
  23. 23.
    K. Hepp, E.H. Lieb, Ann. Phys. 76, 360 (1973)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Rotondo, M.C. Lagomarsino, G. Viola, Phys. Rev. Lett. 114, 143601 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    M. Schiró, C. Joshi, M. Bordyuh, R. Fazio, J. Keeling, H.E. Türeci, Phys. Rev. Lett. 116, 143603 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    H. Zhu, G. Zhang, H. Fan, Sci. Rep. 6, 19751 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    P. Nataf, C. Ciuti, Nat. Commun. 1, 72 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    L.J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, P. Rabl, Phys. Rev. Lett. 113, 023603 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. García-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, R. Gross, Nature Physics 6, 772776 (2010)CrossRefGoogle Scholar
  30. 30.
    P. Forn-Díaz, J.J. García-Ripoll, B. Peropadre, M.A. Yurtalan, J.-L. Orgiazzi, R. Belyansky, C.M. Wilson, A. Lupascu, prepublication arXiv:1602.00416 [quant-ph] (2016)
  31. 31.
    A. Kurcz, A. Bermudez, J.J. García-Ripoll, Phys. Rev. Lett. 112, 180405 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    G. Díaz-Camacho, A. Bermudez, J.J. García-Ripoll, Phys. Rev. A 93, 043843 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    V.G. Rousseau, Phys. Rev. E 77, 056705 (2008)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    V.G. Rousseau, Phys. Rev. E 78, 056707 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Schmidt, G. Blatter, J. Keeling, J. Phys. B 46, 224020 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    H. Gould, J. Tobochnik, W. Christian, An Introduction to Computer Simulation Methods (Addison-Wesley, 2007)Google Scholar
  37. 37.
    J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, M. Weitz, Phys. Rev. A 92, 011602 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thibaut Flottat
    • 1
  • Frédéric Hébert
    • 1
    Email author
  • Valéry G. Rousseau
    • 2
  • George Ghassan Batrouni
    • 1
    • 3
    • 4
    • 5
  1. 1.UCA, CNRSValbonneFrance
  2. 2.Physics Department, Loyola University New OrleansNew OrleansUSA
  3. 3.Institut Universitaire de FranceParisFrance
  4. 4.MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit UMISingaporeSingapore
  5. 5.Centre for Quantum Technologies, National University of SingaporeSingaporeSingapore

Personalised recommendations