Aspects of thin film deposition on granulates by physical vapor deposition

  • Andreas EderEmail author
  • Gerwin H.S. Schmid
  • Harald Mahr
  • Christoph Eisenmenger-Sittner
Open Access
Regular Article


Thin film and coating technology has entered fields which may show significant deviations from classical coating applications where films are deposited on plane, sometimes large substrates. Often surfaces of small and irregularly shaped bodies have to be improved in respect to electrical, thermal or mechanical properties. Film deposition and characterization on such small substrates is not a trivial task. This specially holds for methods based on Physical Vapor Deposition (PVD) processes such as sputter deposition and its ion- and plasma assisted varieties. Due to their line of sight nature a key issue for homogenous films is efficient intermixing. If this problem is mastered, another task is the prediction and determination of the film thickness on single particles as well as on large scale ensembles thereof. In this work a mechanism capable of uniformly coating up to 1000 cm3 of granulate with particle sizes ranging from approx. 10 μm to 150 μm by magnetron sputtering is thoroughly described. A method for predicting the average film thickness on the particles is presented and tested for several differently shaped objects like microspheres, irregular grains of sinter powder or micro diamonds. For assessing the film thickness on single particles as well as on particle ensembles several complementary methods based on optics, X-ray analysis and gravimetry are employed. Their respective merits and limitations are discussed. Finally an outlook on adapting the described technology for surface modification by plasma based reactive and non-reactive processes is given.

Graphical abstract


Plasma Physics 


  1. 1.
    S. Schiller, V. Kirchhoff, N. Schiller, H. Morgner, Surf. Coat. Technol. 125, 354 (2000)CrossRefGoogle Scholar
  2. 2.
    N. Selvakumar, H.C. Barshilia, Solar Energy Mater. Solar Cells 98, 1 (2012)CrossRefGoogle Scholar
  3. 3.
    C.G. Granqvist, Solar Energy Mater. Solar Cells 99, 166 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Kamalisarvestani, R. Saidur, S. Mekhilef, F.S. Javadi, Renew. Sust. Energ. Rev. 26, 353 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Köck, A. Brendel, H. Bolt, J. Nucl. Mater. 362, 197 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S. Scholz, S. Kaskel, J. Colloid Interf. Sci. 323, 84 (2008)CrossRefGoogle Scholar
  7. 7.
    Th. Schubert, B. Trindade, T. Weißgärber, B. Kieback, Mater. Sci. Eng. A 475, 39 (2008)CrossRefGoogle Scholar
  8. 8.
    Lu Wu, Haijiao Zhang, Minghong Wu, Yufang Zhong, Xingwen Liu, Zheng Jiao, Microporous and Mesoporous Mater. 228, 318 (2016)CrossRefGoogle Scholar
  9. 9.
    L.H. Tamborini, M.E. Casco, M.P. Militello, J. Silvestre-Albero, C.A. Barbero, D.F. Acevedo, Fuel Process. Technol. 149, 209 (2016)CrossRefGoogle Scholar
  10. 10.
    A.E. Alvarez, A.N. Gravina, J.M. Sieben, P.V. Messina, M.M.E. Duarte, Mater. Sci. Eng. B 211, 26 (2016)CrossRefGoogle Scholar
  11. 11.
    Kuan-Wen Wang, Shu-Ru Chung, Ling-Yun Jang, Jyh-Fu Lee, Tsong-Pyng Perng, J. Alloys Compd. 415, 62 (2006)CrossRefGoogle Scholar
  12. 12.
    Chang-Hoon Kim, Kum-Jin Park, Yeo-Joo Yoon, Dong-Sook Sinn, Young-Tae Kim, Kang-Heon Hur, J. Eur. Ceramic Soc. 28, 2589 (2008)CrossRefGoogle Scholar
  13. 13.
    Jae-Hoon Ahn, Jin-Kyu Lee, Dong-Woo Kim, Young-Soo Jung, Gil-Pyo Kim, Sung-Hyeon Baeck, Mater. Res. Bull. 43, 2266 (2008)CrossRefGoogle Scholar
  14. 14.
    R.N. d’Alnoncourt, M. Becker, J. Sekulic, R.A. Fischer, M. Muhler, Surf. Coat. Technol. 201, 9035 (2007)CrossRefGoogle Scholar
  15. 15.
    Jun Liu, A.T. Harris, Chem. Eng. Sci. 64, 1511 (2009)CrossRefGoogle Scholar
  16. 16.
    W.O. Filtvedt, A. Holt, P.A. Ramachandran, M.C. Melaaen, Solar Energy Mater. Solar Cells 107, 188 (2012)CrossRefGoogle Scholar
  17. 17.
    Reactive Sputter Deposition, edited by Diederik Depla, Stijn Mahieu (Springer Berlin Heidelberg, 2008)Google Scholar
  18. 18.
    R.F. Bunshah et al., Deposition Technologies for Films and Coatings – Developments and Applications (Noyes Publications, Park Ridge, New Jersey, 1982)Google Scholar
  19. 19.
    V.L. Popov, Kontaktmechanik und Reibung (Springer Heidelberg, Dordrecht, London, 2010), Vol. 2Google Scholar
  20. 20.
    G. Schmid, C. Eisenmenger-Sittner, J. Hell, M. Horkel, M. Keding, H. Mahr, Surf. Coat. Technol. 205, 1929 (2010)CrossRefGoogle Scholar
  21. 21.
    G.H.S. Schmid, C. Eisenmenger-Sittner, Surf. Coat. Technol. 236, 353 (2013)CrossRefGoogle Scholar
  22. 22.
    H. Kersten, H. Deutsch, G.M.W. Kroesen, Int. J. Mass Spectrom. 233, 51 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    H. Kersten, H. Deutsch, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen, Int. J. Mass Spectrom. 223–224, 313 (2003)CrossRefGoogle Scholar
  24. 24.
    Sympatec GmbH System-Partikel-Techni,
  25. 25.
    Refractive Index. INFO – Refractive index database,
  26. 26.
    Win X-Ray – Electron Beam Scattering Modeling,
  27. 27.
    Ye.P. Mamunya, H. Zois, L. Apekis, E.V. Lebedev, Powder Technol. 140, 49 (2004)CrossRefGoogle Scholar
  28. 28.
    J. Sánchez-González, A. Macías-García, M.F. Alexandre-Franco, V. Gómez-Serrano, Carbon 43, 741 (2005)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Andreas Eder
    • 1
    Email author
  • Gerwin H.S. Schmid
    • 1
    • 2
  • Harald Mahr
    • 1
  • Christoph Eisenmenger-Sittner
    • 1
  1. 1.Vienna University of Technology, Institut of Solid State PhysicsViennaAustria
  2. 2.Austrian Institute of Technology, Energy DepartmentViennaAustria

Personalised recommendations