Measurement and simulation of the momentum transferred to a surface by deposition of sputtered atoms*

  • Alexander SpethmannEmail author
  • Thomas Trottenberg
  • Holger Kersten
Regular Article
Part of the following topical collections:
  1. Topical Issue: Physics of Ion Beam Sources


Forces on a small plane measurement target caused by sputtered atomic particles originated at plane sputter targets by a beam of argon particles are investigated. The rotatable sputter targets are centrally mounted in front of the ion source and allow a variation of the angle of incidence. The measurement surface of the force probe is arranged laterally beside the sputter target; it collects the particles released perpendicularly to the beam direction. Sputter targets of silver, copper, aluminum, titanium, and carbon are studied. The measurements are compared with a model that traces the trajectories of the argon ions and the sputtered target atoms between the ion source, the sputter target, and the force probe. The sputtering is calculated with the popular SRIM code based on binary collision cascades. The measured forces are found to be in general greater than the simulated forces. The dependence on the angle of incidence is similar in case of the elements heavier than the ions. In case of the lighter elements, only the simulation exhibits a pronounced maximum at angles between 65° and 70°.

Graphical abstract


  1. 1.
    L.V. Starukhina, Adv. Space Res. 37, 50 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A. Benninghoven, Surf. Sci. 53, 596 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    C.M. Melliar-Smith, J. Vac. Sci. Technol. 13, 1008 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Donnelly, A. Kornblit, J. Vac. Sci. Technol. 31, 050825 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Kenmotsu, M. Wada, T. Hyakutake, T. Muramoto, M. Nishida, Rev. Sci. Instrum. 81, 02B109 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Yalin, J. Topper, C. Farnell, G. Yoder, B. Hoang, R. Corey, 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–066 (Wiesbaden, Germany, 2011)Google Scholar
  7. 7.
    J.N. Brooks, D.N. Ruzic, D.B. Hayden, Fusion Eng. Des. 37, 455 (1997)CrossRefGoogle Scholar
  8. 8.
    J.N. Brooks, R. Causey, G. Federici, D.N. Ruzic, J. Nucl. Mater. 241–243, 294 (1997)CrossRefGoogle Scholar
  9. 9.
    P. Sigmund, Thin Solid Films 520, 6031 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Zalar, J. Kovač, B. Praček, P. Panjan, M. Čeh, Appl. Surf. Sci. 254, 6611 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res., Sect. B 316, 198 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    T. Trottenberg, V. Schneider, H. Kersten, Phys. Plasmas 17, 103702 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    T. Trottenberg, A. Spethmann, J. Rutscher, H. Kersten, Plasma Phys. Control. Fusion. 54, 124005 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J. Rutscher, T. Trottenberg, H. Kersten, Nucl. Instrum. Methods B 301, 47 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A. Spethmann, T. Trottenberg, H. Kersten, Rev. Sci. Instrum. 86, 015107 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Zeuner, F. Scholze, H. Neumann, T. Chassé, G. Otto, D. Roth, A. Hellmich, B. Ocker, Surf. Coat. Technol. 142–144, 11 (2001)CrossRefGoogle Scholar
  18. 18.
    T. Trottenberg, A. Spethmann, V. Schneider, M. Stahl, M. Giesenhagen, H. Kersten, Contrib. Plasma Phys. 52, 584 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Sheehan, N. Hershkowitz, Plasma Sci. Technol. 20, 063001 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    B.E. Cherrington, Plasma Chem Plasma Process. 2, 113 (1982)CrossRefGoogle Scholar
  21. 21.
    C. Bundesmann, M. Tartz, F. Scholze, H.J. Leiter, F. Scortecci, R.Y. Gnizdor, H. Neumann, Rev. Sci. Instrum. 81, 046106 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    H. Gnaser, Top. Appl. Phys. 110, 231 (2007)CrossRefGoogle Scholar
  23. 23.
    G.K. Wehner, D. Rosenberg, J. Appl. Phys. 31, 177 (1960)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Yamamura, H. Tawara, Institute of Plasma Physics, Nagoya University 62, 149 (1996)Google Scholar
  25. 25.
    C. Bundesmann, R. Feder, T. Lautenschläger, H. Neumann, Contrib. Plasma Phys. 55, 737 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    A.V. Phelps, J. Appl. Phys. 76, 747 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM – The Stopping and Range of Ions in Matter (SRIM Co., Chester, Maryland, 2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexander Spethmann
    • 1
    Email author
  • Thomas Trottenberg
    • 1
  • Holger Kersten
    • 1
  1. 1.Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu KielKielGermany

Personalised recommendations