Advertisement

Molecular dynamics for irradiation driven chemistry: application to the FEBID process*

  • Gennady B. Sushko
  • Ilia A. Solov’yovEmail author
  • Andrey V. Solov’yov
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions (7th International Symposium)

Abstract

A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes involving small molecules or molecular fragments. We advocate that the quantum transformations, such as molecular bond breaks, creation and annihilation of dangling bonds, electronic charge redistributions, changes in molecular topologies, etc., could be incorporated locally into the molecular force fields that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package capable to operate with a large library of classical potentials, many-body force fields and their combinations. IDMD opens a broad range of possibilities for modelling of irradiation driven modifications and chemistry of complex molecular systems ranging from radiotherapy cancer treatments to the modern technologies such as focused electron beam deposition (FEBID). As an example, the new methodology is applied for studying the irradiation driven chemistry caused by FEBID of tungsten hexacarbonyl W(CO)6 precursor molecules on a hydroxylated SiO2 surface. It is demonstrated that knowing the interaction parameters for the fragments of the molecular system arising in the course of irradiation one can reproduce reasonably well experimental observations and make predictions about the morphology and molecular composition of nanostructures that emerge on the surface during the FEBID process.

Graphical abstract

References

  1. 1.
    D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 66, 206 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A.G.G.M. Tielens, Rev. Mod. Phys. 85, 1021 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Astrobiology: The Quest for the Conditions of Life, edited by G. Horneck, C. Baumstark-Khan (Springer-Verlag Berlin Heidelberg, 2002)Google Scholar
  5. 5.
    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012)CrossRefGoogle Scholar
  6. 6.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008)CrossRefGoogle Scholar
  7. 7.
    B. Wu, A. Kumar, J. Vac. Sci. Technol. B 25, 1743 (2007)CrossRefGoogle Scholar
  8. 8.
    A.M. Hawryluk, L.G. Seppala, J. Vac. Sci. Technol. B 6, 2162 (1988)CrossRefGoogle Scholar
  9. 9.
    F. Heidet, N.R. Brown, M. Haj Tahar, Rev. Accelerat. Sci. Technol. 8, 99 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    P. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 485, 43 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J. Maruhn, P. Reinhard, E. Suraud, Simple Models of Many-Fermion Systems (Springer-Verlag, Berlin, Heidelberg, 2010)Google Scholar
  12. 12.
    D. Jacquemin, V. Wathelet, E.A. Perpéte, C. Adamo, J. Chem. Theory Comput. 5, 2420 (2009)CrossRefGoogle Scholar
  13. 13.
    A.D. Bochevarov, E. Harder, T.F. Hughes, J.R. Greenwood, D.A. Braden, D.M. Philipp, D. Rinaldo, M.D. Halls, J. Zhang, R.A. Friesner, Int. J. Quantum Chem. 113, 2110 (2013)CrossRefGoogle Scholar
  14. 14.
    K. Sanbonmatsu, C.S. Tung, J. Struct. Biol. 157, 470 (2007)CrossRefGoogle Scholar
  15. 15.
    G. Zhao, J.R. Perilla, E.L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A.M. Gronenborn, K. Schulten, C. Aiken, P. Zhang, Nature 497, 643 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    P. Husen, I.A. Solov’yov, J. Am. Chem. Soc. 138, 12150 (2016)CrossRefGoogle Scholar
  17. 17.
    A.C. Pan, T.M. Weinreich, S. Piana, D.E. Shaw, J. Chem. Theory Comput. 12, 1360 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Salomon-Ferrer, A.W. Gotz, D. Poole, S. Le Grand, R.C. Walker, J. Chem. Theory Comput. 9, 3878 (2013)CrossRefGoogle Scholar
  19. 19.
    A.K. Rappé, C.J. Casewit, Molecular Mechanics Across Chemistry (University Science Books, 1997)Google Scholar
  20. 20.
    J. Gumbart, E. Schreiner, D.N. Wilson, R. Beckmann, K. Schulten, Biophys. J. 103, 331 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Shim, G.I. Humphreys, B.M. Venkatesan, J.M. Munz, X. Zou, C. Sathe, K. Schulten, F. Kosari, A.M. Nardulli, G. Vasmatzis, R. Bashir, Sci. Rep. 3, 1389 (2013)ADSGoogle Scholar
  22. 22.
    E. Sjulstok, J.M.H. Olsen, I.A. Solov’yov, Sci. Rep. 5, 18446 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    G. Lüdemann, I.A. Solov’yov, T. Kubař, M. Elstner, J. Am. Chem. Soc. 137, 1147 (2015)CrossRefGoogle Scholar
  24. 24.
    B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 4, 187 (1983)CrossRefGoogle Scholar
  25. 25.
    D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, J. Comput. Chem. 26, 1668 (2005)CrossRefGoogle Scholar
  26. 26.
    D.V.D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. Mark, H. Berendsen, J. Comput. Chem. 26, 1701 (2005)CrossRefGoogle Scholar
  27. 27.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)CrossRefGoogle Scholar
  28. 28.
    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)CrossRefGoogle Scholar
  29. 29.
    G.B. Sushko, I.A. Solov’yov, A.V. Verkhovtsev, S.N. Volkov, A.V. Solov’yov, Eur. Phys. J. D 70, 12 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    I.A. Solov’yov, G.B. Sushko, A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, MBN Explorer: Dynamics of Biomolecular Systems and Self-organization (Polytechnic University Publishing House, St. Petersburg State Polytechnic University, St. Petersburg, Russia, 2015)Google Scholar
  31. 31.
    I.A. Solov’yov, G.B. Sushko, A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, MBN Explorer: Simulations of Nanomaterials Structure and Dynamics (Polytechnic University Publishing House, St. Petersburg State Polytechnic University, St. Petersburg, Russia, 2015)Google Scholar
  32. 32.
    V.V. Dick, I.A. Solov’yov, A.V. Solov’yov, Phys. Rev. B 84, 115408 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    V.V. Dick, I.A. Solov’yov, A.V. Solov’yov, J. Phys.: Conf. Ser. 248, 012025 (2010)ADSGoogle Scholar
  34. 34.
    M. Panshenskov, I.A. Solov’yov, A.V. Solov’yov, J. Comput. Chem. 35, 1317 (2014)CrossRefGoogle Scholar
  35. 35.
    I.A. Solov’yov, A.V. Solov’yov, N. Kébaili, A. Masson, C. Bréchignac, Phys. Stat. Sol. B 251, 609 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    I.A. Solov’yov, A.V. Solov’yov, J. Phys.: Conf. Ser. 438, 012006 (2013)ADSGoogle Scholar
  37. 37.
    G.B. Sushko, V.G. Bezchastnov, I.A. Solov’yov, A.V. Korol, W. Greiner, A.V. Solov’yov, J. Comput. Phys. 252, 404 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    G. Sushko, A. Korol, W. Greiner, A. Solov’yov, J. Phys.: Conf. Ser. 438, 012018 (2013)ADSGoogle Scholar
  39. 39.
    G. Sushko, V. Bezchastnov, A. Korol, W. Greiner, A. Solov’yov, R. Polozkov, V. Ivanov, J. Phys.: Conf. Ser. 438, 012019 (2013)ADSGoogle Scholar
  40. 40.
    G.B. Sushko, A.V. Korol, A.V. Solov’yov, Nucl. Instrum. Meth. Phys. Res. B 355, 39 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    A.V. Verkhovtsev, S. Schramm, A.V. Solov’yov, Eur. Phys. J. D 68, 246 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    A.V. Verkhovtsev, M. Hanauske, A.V. Yakubovich, A.V. Solov’yov, Comput. Mater. Sci. 76, 80 (2013)CrossRefGoogle Scholar
  43. 43.
    G.B. Sushko, A.V. Verkhovtsev, A.V. Solov’yov, J. Phys. Chem. A 118, 8426 (2014)CrossRefGoogle Scholar
  44. 44.
    I.A. Solov’yov, M. Mathew, A.V. Solov’yov, W. Greiner, Phys. Rev. E 78, 051601 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    J. Geng, I.A. Solov’yov, D.G. Reid, P. Skelton, A.E.H. Wheatley, A.V. Solov’yov, B.F.G. Johnson, Phys. Rev. B 81, 214114 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    J. Geng, I.A. Solov’yov, W. Zhou, A.V. Solov’yov, B.F.G. Johnson, J. Phys. Chem. C 113, 6390 (2009)CrossRefGoogle Scholar
  47. 47.
    I.A. Solov’yov, J. Geng, A.V. Solov’yov, B.F. Johnson, Chem. Phys. Lett. 472, 166 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    P. Moskovkin, M. Panshenskov, S. Lucas, A.V. Solov’yov, Phys. Stat. Sol. B 251, 1456 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    G.B. Sushko, A.V. Verkhovtsev, A.V. Yakubovich, S. Schramm, A.V. Solov’yov, J. Phys. Chem. A 118, 6685 (2014)CrossRefGoogle Scholar
  50. 50.
    A.V. Verkhovtsev, A.V. Yakubovich, G.B. Sushko, M. Hanauske, A.V. Solov’yov, Comput. Mater. Sci. 76, 20 (2013)CrossRefGoogle Scholar
  51. 51.
    A.V. Yakubovich, E. Surdutovich, A.V. Solov’yov, J. Phys.: Conf. Ser. 373, 012014 (2012)ADSGoogle Scholar
  52. 52.
    E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Eur. Phys. J. D 60, 101 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Sci. Rep. 3, 1289 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell Jr., J. Comput. Chem. 31, 671 (2010)Google Scholar
  56. 56.
    R.B. Best, X. Zhu, J. Shim, P.E.M. Lopes, J. Mittal, M. Feig, A.D. MacKerell, J. Chem. Theory Comput. 8, 3257 (2012)CrossRefGoogle Scholar
  57. 57.
    A.D. MacKerell, Jr., et al., J. Phys. Chem. B 102, 3586 (1998)CrossRefGoogle Scholar
  58. 58.
    J.D. Fowlkes, P.D. Rack, ACS nano 4, 1619 (2010)CrossRefGoogle Scholar
  59. 59.
    A.M. Barragan, A.R. Crofts, K. Schulten, I.A. Solov’yov, J. Phys. Chem. B 119, 433 (2015)CrossRefGoogle Scholar
  60. 60.
    E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems (Los Alamos report LA-1940, 1955)Google Scholar
  61. 61.
    N. Silvis-Cividjian, C. Hagen, L. Leunissen, P. Kruit, Microelectron. Eng. 61, 693 (2002)CrossRefGoogle Scholar
  62. 62.
    F. Salvat-Pujol, H.O. Jeschke, R. Valentí, Beilstein J. Nanotechnol. 4, 781 (2013)CrossRefGoogle Scholar
  63. 63.
    G. Cetini, O. Gambino, Accad. Sci. Torino., Classe Sci. Fis. Mat. Nat. 97, 1197 (1963)Google Scholar
  64. 64.
    K. Muthukumar, I. Opahle, J. Shen, H.O. Jeschke, R. Valentí, Phys. Rev. B 84, 205442 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    A.V. Yakubovich, A.V. Verkhovtsev, M. Hanauske, A.V. Solov’yov, Comput. Mater. Sci. 76, 60 (2013)CrossRefGoogle Scholar
  66. 66.
    M. Huth, D. Klingenberger, C. Grimm, F. Porrati, R. Sachser, N. J. Phys. 11, 033032 (2009)CrossRefGoogle Scholar
  67. 67.
    M. Finnis, J. Sinclair, Philos. Mag. A 50, 45 (1984)ADSCrossRefGoogle Scholar
  68. 68.
    A.P. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gennady B. Sushko
    • 1
  • Ilia A. Solov’yov
    • 2
    Email author
  • Andrey V. Solov’yov
    • 1
  1. 1.MBN Research Center, Altenhöferallee 3Frankfurt am MainGermany
  2. 2.University of Southern Denmark (SDU)Odense MDenmark

Personalised recommendations