Dynamics of current sheath in a hollow electrode Z-pinch discharge using slug model

Regular Article
  • 58 Downloads

Abstract

The hollow electrode Z-pinch (HEZP) experiment is a new construction for the electromagnetic propulsion application in which the plasma is formed by the discharge between a plate and ring electrodes through which the plasma is propelled. The experimental results for 8 kV charging voltage shows that the peak discharge current is about 109 kA, which is in good agreement with the value obtained from the simulation in the slug model that simulates the sheath dynamics in the HEZP. The fitting of the discharge current from the slug model indicates that the total system inductance is 238 nH which is relatively a high static inductance accompanied with a deeper pinch depth indicating that the fitted anomalous resistance would be about 95 mΩ. The current and mass factors vary with the changing the gas pressure and the charging voltage. The current factor is between 0.4 and 0.5 on average which is relatively low value. The mass factor decreases by increasing the gas pressure indicating that the sheath is heavy to be driven by the magnetic pressure, which is also indicated from the decreases of the drive factor, hence the radial sheath velocity decreases. The plasma inductance and temperature increase with the increase of the drive factor while the minimum pinch radius decreases.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    M.G. Haines, Plasma Phys. Control. Fusion 53, 093001 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    M.G. Haines, S.V. Lebedev, J.P. Chittenden, F.N. Beg, S.N. Bland, A.E. Dangor, Phys. Plasmas 7, 1672 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    D.D. Ryutov, M.S. Derzon, M.K. Matzen, Rev. Mod. Phys. 72, 167 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    M.E. Abdel-kader, M.A. Abd Al-Halim, A.M. Shagar, H.A. Eltayeb, H.A. Algamal, A.H. Saudy, J. Fusion Energ 33, 53 (2014)CrossRefGoogle Scholar
  5. 5.
    M.E. Abdel-kader, M.A. Abd Al-Halim, A.M. Shagar, A.H. Saudy, Eur. Phys. J. D 68, 160 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    M.E. Abdel-kader, M.A. Abd Al-Halim, A.M. Shagar, H.A. Eltayeb, J. Fusion Energ. 34, 238 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Moreno, H. Bruzzone, J. Martínez, A. Clausse, IEEE Trans. Plasma Sci. 28, 1735 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    F. Dothan, H. Riege, E. Boggasch, K. Frank, J. Appl. Phys. 62, 3585 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    D. Potter, Nucl. Fusion 18, 813 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    Sh. Al-Hawat, S. Saloum, Contrib. Plasma Phys. 49, 5 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S. Lee, J. Fusion Energ. 33, 319 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Goudarzi, A. Raeisdana, J. Fusion Energ 30, 130 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    D. Klir, A.V. Shishlov, V.A. Kokshenev, P. Kubes, A.Yu. Labetsky, K. Rezac, J. Cikhardt, F.I. Fursov, B.M. Kovalchuk, J. Kravarik, N.E. Kurmaev, N.A. Ratakhin, O. Sila, J. Stodulka, Plasma Phys. Control. Fusion 55, 085012 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    S. Lee, S.H. Saw, Appl. Phys. Lett. 92, 021503 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF. https://www.plasmafocus.net/IPFS/modelpackage/File1RADPF.htm
  17. 17.
    S. Lee, Plasma focus model yielding trajectory and structure, in Radiations in Plasmas, edited by B. Mcnamara. Proceedings of Spring College in Plasma Physics 1983, ICTP, Trieste (World Scientific Pub Co, Singapore, 1984), pp. 978–987Google Scholar
  18. 18.
    S. Lee, S.H. Saw, J. Ali, J. Fusion Energ. 32, 42 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    M. Akel, S. Lee, J. Fusion Energ. 32, 111 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S. Lee, S.H. Saw, Energies 3, 711 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Lee, S.H. Saw, A.E. Abdou, H. Torreblanca, J. Fusion Energ. 30, 277 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Ali, S. Lee, F.D. Ismail, Saktioto, J. Ali, P.P. Yupapin, Procedia Eng. 8, 393 (2011)CrossRefGoogle Scholar
  23. 23.
    M.J. Sadowski, M. Scholz, NUKLEONIKA 57, 11 (2012)Google Scholar
  24. 24.
    R. Verma, R.S. Rawat, P. Lee, A.T.L. Tan, H. Shariff, G.J. Ying, S.V. Springham, A. Talebitaher, U. Ilyas, A. Shyam, IEEE Trans. Plasma Sci. 40, 3280 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    F. Veloso, C. Pavez, J. Moreno, V. Galaz, M. Zambra, L. Soto, J. Fusion Energ. 31, 30 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    S. Lee, Appl. Phys. Lett. 95, 151503 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Physics Department, Faculty of Science, Banha UniversityBenhaEgypt

Personalised recommendations