Electron scattering by biomass molecular fragments: useful data for plasma applications?

  • Marco A. Ridenti
  • Jayr Amorim Filho
  • Michael J. Brunger
  • Romarly F. da Costa
  • Márcio T. do N. Varella
  • Márcio H.F. Bettega
  • Marco A.P. Lima
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering

Abstract

Recent data obtained for electron scattering by biomass molecular fragments, indicated that low-energy resonances may have an important role in the de-lignification of biomass through a plasma pre-treatment. To support these findings, we present new experimental evidence of the predicted dissociation pathways on plasma treatment of biomass. An important question is how accurate must the experimental and/or the theoretical data be in order to indicate that plasma modelings can be really useful in understanding plasma applications? In this paper, we initiate a discussion on the role of data accuracy of experimental and theoretical electron-molecule scattering cross sections in plasma modeling. First we review technological motivations for carrying out electron-molecule scattering studies. Then we point out the theoretical and experimental limitations that prevent us from obtaining more accurate cross sections. We present a few examples involving biomass molecular fragments, to illustrate theoretical inaccuracies on: resonances positions and widths, electronic excitation, superelastic cross sections from metastable states and due to multichannel effects on the momentum transfer cross sections. On the experimental side we briefly describe challenges in making absolute cross sections measurements with biomass species and radicals. And finally, through a simulation of a N2 plasma, we illustrate the impact on the simulation due to inaccuracies on the resonance positions and widths and due to multichannel effects on the momentum transfer cross sections.

Graphical abstract

Supplementary material

References

  1. 1.
    P.V. Johnson, C.P. Malone, M.A. Khakoo, J.W. McConkey, I. Kanik, J. Phys.: Conf. Ser. 88, 012069 (2007)ADSGoogle Scholar
  2. 2.
    L. Campbell, M.J. Brunger, Plasma Sources Sci. Technol. 22, 013002 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    W.M. Huo, V. McKoy, M.A.P. Lima, T.L. Gibson, in Thermophysical Aspects of Reentry Flow, edited by J. Moss, C. Scott (AIAA, New York, 1986), Vol. 103, pp. 152–196Google Scholar
  4. 4.
    M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, 1994)Google Scholar
  5. 5.
    W.N.G. Hitchon, Plasma Processes for Semiconductor Fabrication (Cambridge, 1999)Google Scholar
  6. 6.
    L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 28, 967 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    A. Garscadden, Z. Phys. D 24, 99 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    J.-S. Yoon, M.-Y. Song, H. Kato, M. Hoshino, H. Tanaka, M.J. Brunger, S.J. Buckman, H. Cho, J. Phys. Chem. Ref. Data 39, 033106 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    W.F. van Dorp, Phys. Chem. Chem. Phys. 14, 16753 (2012)CrossRefGoogle Scholar
  10. 10.
    W.F. van Dorp, X. Zhang, B.L. Feringa, T.W. Hansen, J.B. Wagner, J. Th. M. de Hosson, ACS Nano 6, 10076 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    D.B. Graves, J. Phys. D 45, 263001 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    T. von Woedtke, S. Reuter, K. Masur, K.D. Wektmann, Phys. Rep. 530, 291 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J. Kopyra, H. Abdoul-Carime, F. Kossoski, M.T. do N. Varella, Phys. Chem. Chem. Phys. 16, 25054 (2014)CrossRefGoogle Scholar
  16. 16.
    F. Kossoski, J. Kopyra, M.T. do N. Varella, Phys. Chem. Chem. Phys. 17, 28958 (2015)CrossRefGoogle Scholar
  17. 17.
    E.M. de Oliveira, S. d’A. Sanchez, M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lima, M.T. do N. Varella, Phys. Rev. A 86, 020701 (2012)CrossRefGoogle Scholar
  18. 18.
    E.M. de Oliveira, R.F. da Costa, S. d’A. Sanchez, A.P.P. Natalense, M.H.F. Bettega, M.A.P. Lima, M.T. do N. Varella, Phys. Chem. Chem. Phys. 15, 1682 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Amorim, C. Oliveira, J.A. Souza-Corrêa, M.A. Ridenti, Plasma Process. Polym. 10, 670 (2013)CrossRefGoogle Scholar
  20. 20.
    J.M. Carr, P.G. Galiatsatos, J.D. Gorfinkiel, A.G. Harvey, M.A. Lysaght, D. Madden, Z. Mǎsín, M. Plummer, J. Tennyson, H.N. Varambhia, Eur. Phys. J. D 66, 58 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    T.N. Rescigno, A.E. Orel, Phys. Rev. A 88, 012703 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    R.F. da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, Eur. Phys. J. D 69, 159 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Buckman, M.J. Brunger, K. Ratnavelu, Fusion Sci. Technol. 63, 385 (2013)Google Scholar
  24. 24.
    J.R. Brunton, L.R. Hargreaves, T.M. Maddern, S.J. Buckman, G. García, F. Blanco, O. Zatsarinny, K. Bartschat, D.B. Jones, G.B. da Silva, M.J. Brunger, J. Phys. B 46, 245203 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    M.J. Brunger, S.J. Buckman, Phys. Rep. 357, 215 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    M. Moisan, C. Beaudry, P. Leprince, IEEE Trans. Plasma Sci. 3, 55 (1975)ADSCrossRefGoogle Scholar
  27. 27.
    M.A. Ridenti, J.A. Souza-Corrêa, J. Amorim, J. Phys. D 47, 045204 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)Google Scholar
  29. 29.
    R.F. da Costa, M.H.F. Bettega, M.A.P. Lima, Phys. Rev. A 77, 012717 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    M.H.F. Bettega, M.A.P. Lima, J. Chem. Phys. 126, 194317 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    T.C. Freitas, M.A.P. Lima, S. Canuto, M.H.F. Bettega, Phys. Rev. A 80, 62710 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    T.C. Freitas, K. Coutinho, M.T. do N. Varella, M.A.P. Lima, S. Canuto, M.H.F. Bettega, J. Chem. Phys. 138, 174307 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    E.M. de Oliveira, T.C. Freitas, K. Coutinho, M.T. do N. Varella, S. Canuto, M.A.P. Lima, M.H.F. Bettega, J. Chem. Phys. 141, 051105 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    C.S. Sartori, F.J. da Paixão, M.A.P. Lima, Phys. Rev. A 55, 3243 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    C.S. Sartori, F.J. da Paixão, M.A.P. Lima, Phys. Rev. A 58, 2857 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    J. Amorim, J.L. da S. Lino, J. Loureiro, M.A.P. Lima, F.J. da Paixão, Chem. Phys. 246, 275 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    T.M. Maddern, L.R. Hargreaves, M. Bolorizadeh, M.J. Brunger, S.J. Buckman, Meas. Sci. Technol. 19, 085801 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    T.M. Maddern, L.R. Hargreaves, J.R. Francis-Staite, M.J. Brunger, S.J. Buckman, C. Winstead, V. McKoy, Phys. Rev. Lett. 100, 063202 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    R.F. da Costa, M.H.F. Bettega, M.T. do N. Varella, E.M. de Oliveira, M.A.P. Lima, Phys. Rev. A 90, 052701 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    R.F. da Costa, E.M. de Oliveira, M.H.F. Bettega, M.T. do N. Varella, D.B. Jones, M.J. Brunger, F. Blanco, R. Colmenares, P. Limão-Vieira, G. García, M.A.P. Lima, J. Chem. Phys. 142, 104304 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    R.F.C. Neves, D.B. Jones, M.C.A. Lopes, K.L. Nixon, G.B. da Silva, H.V. Duque, E.M. de Oliveira, R.F. da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, K. Ratnavelu, G. García, M.J. Brunger, J. Chem. Phys. 142, 104305 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    D.B. Jones, R.F.C. Neves, M.C.A. Lopes, R.F. da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, G. García, P. Limão-Vieira, M.J. Brunger, J. Chem. Phys. 144, 124309 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    R.F. daCosta, M.T. do N. Varella, M.H.F. Bettega, R.F.C. Neves, M.C.A. Lopes, F. Blanco, G. García, D.B. Jones, M.J. Brunger, M.A.P. Lima, J. Chem. Phys. 144, 124310 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    P. Palihawadana, J.P. Sullivan, S.J. Buckman, Z. Masín, J.D. Gorfinkiel, F. Blanco, G. García, M.J. Brunger, J. Chem. Phys. 139, 014308 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    S. Longo, M. Capitelli, Plasma Chem. Plasma Process 14, 1 (1994)CrossRefGoogle Scholar
  46. 46.
    P. Fonte, A. Mangiarotti, S. Botelho, J.A.C. Gonçalves, M.A. Ridenti, C.C. Bueno, Nucl. Instrum. Methods A 613, 40 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    D.A. Dahl, A T.H. Teich, C.M. Franck, J. Phys. D 45, 4485201 (2012)CrossRefGoogle Scholar
  48. 48.
    Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1997)Google Scholar
  49. 49.
    J.H. Parker Jr., J.J. Lowke, Phys. Rev. 181, 290 (1969)ADSCrossRefGoogle Scholar
  50. 50.
    Z. LjPetrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. Radmilović-Rađenović, J. Phys. D 42, 194002 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    H.W. Ellis, E.W. McDaniel, D.L. Albritton, L.A. Viehland, S.L. Lin, E.A. Mason, At. Data Nucl. Data Tables 22, 179 (1978)ADSCrossRefGoogle Scholar
  52. 52.
    K. Koura, Phys. Fluids 29, 3509 (1986)ADSCrossRefGoogle Scholar
  53. 53.
    G.W. Fraser, E. Mathieson, Nucl. Instrum. Methods A 247, 544 (1985)ADSCrossRefGoogle Scholar
  54. 54.
    S.F. Biagi, Nucl. Instrum. Methods A 421, 234 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Sakai, H. Tagashira, S. Sakamoto, J. Phys. D 10, 1035 (1976)ADSCrossRefGoogle Scholar
  56. 56.
    S. Longo, M. Capitelli, Plasma Chem. Plasma Process 14, 1 (1994)CrossRefGoogle Scholar
  57. 57.
    J.B. Fisk, Phys. Rev. 49, 167 (1936)ADSCrossRefGoogle Scholar
  58. 58.
    H.G. Weller, G. Tabor, H. Jasak, C. Fureby, Comput. Phys. 14, 620 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    H. Hasegawa, H. Date, M. Shimozuma, K. Yoshida, H. Tagashira, J. Phys. D 29, 2664 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    J.L. Hernández-Ávila, E. Basurto, J. de Urquijo, J. Phys. D 14, 3088 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    C.A. Barth, Plan. Space Sci. 40, 315 (1992)ADSCrossRefGoogle Scholar
  62. 62.
    L. Campbell, M.J. Brunger, Geophys. Res. Lett. 34, L22102 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    L. Campbell, D.C. Cartwright, M.J. Brunger, J. Geophys. Res. 112, A08303 (2007)ADSGoogle Scholar
  64. 64.
    L. Campbell, M.J. Brunger, Z.Lj. Petrovic, M. Jelisavcic, R. Panajotovic, S.J. Buckman, Geophys. Res. Lett. 31, L10103 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    L. Campbell, M.J. Brunger, M. Allan, J. Phys.: Conf. Ser. 115, 012003 (2008)ADSGoogle Scholar
  66. 66.
    B. Mojarrabi, R.J. Gulley, A.G. Middleton, D.C. Cartwright, P.J.O. Teubner, S.J. Buckman, M.J. Brunger, J. Phys. B 28, 487 (1995)ADSCrossRefGoogle Scholar
  67. 67.
    L. Josić, T. Wróblewski, Z. Lj. Petrović, J. Mechlińska-Drewko, G.P. Karwasz, Chem. Phys. Lett. 350, 318 (2001)ADSCrossRefGoogle Scholar
  68. 68.
    M. Jelisavcic, R. Panajotovic, S.J. Buckman, Phys. Rev. Lett. 90, 203201 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    C.S. Trevisan, K. Houfek, Z. Zhang, A.E. Orel, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 71, 052714 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    M. Allan, J. Phys. B 38, 603 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    P.J. Espy, C.R. Harris, A.J. Steed, J.C. Ulwick, R.H. Haycock, R. Straka, Plan. Space Sci. 36, 543 (1988)ADSCrossRefGoogle Scholar
  72. 72.
    L. Campbell, D.C. Cartwright, M.J. Brunger, P.J.O. Teubner, J. Geophys. Res. 111, A09317 (2006)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marco A. Ridenti
    • 1
    • 2
  • Jayr Amorim Filho
    • 1
    • 2
  • Michael J. Brunger
    • 3
    • 4
  • Romarly F. da Costa
    • 5
  • Márcio T. do N. Varella
    • 6
  • Márcio H.F. Bettega
    • 7
  • Marco A.P. Lima
    • 1
  1. 1.Instituto de Física “Gleb Wataghin”, Universidade Estadual de CampinasCampinasBrazil
  2. 2.Instituto Tecnológico da Aeronáutica, Departamento de Ciência e Tecnologia AeroespacialSão José dos CamposBrazil
  3. 3.School of Chemical and Physical Sciences, Flinders UniversityAdelaideAustralia
  4. 4.Institute of Mathematical Sciences, University of MalayaKuala LumpurMalaysia
  5. 5.Centro de Ciências Exatas, Departamento de Física, Universidade Federal do Espírito SantoVitória – Espírito SantoBrazil
  6. 6.Instituto de Física, Universidade de São PauloSão PauloBrazil
  7. 7.Departamento de Física, Universidade Federal do ParanáCuritibaBrazil

Personalised recommendations