A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

  • María Teresa Baeza-RomeroEmail author
  • Francois Gaie-Levrel
  • Ahmed Mahjoub
  • Vicente López-Arza
  • Gustavo A. Garcia
  • Laurent Nahon
Regular Article
Part of the following topical collections:
  1. Topical Issue: Low-Energy Interactions related to Atmospheric and Extreme Conditions


A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13–3 ppm) of α-pinene (2–3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

Graphical abstract

Supplementary material


  1. 1.
    J. Seinfeld, S. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley-Interscience, 2006)Google Scholar
  2. 2.
    M.C. Jacobson, H.C. Hansson, K.J. Noone, R.J. Charlson, Rev. Geophys. 38, 267 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    K.A. Pratt, K.A. Prather, Mass Spectrom. Rev. 31, 17 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Nozière, M. Kalberer, M. Claeys, J. Allan, B. D’Anna, S. Decesari, E. Finessi, M. Glasius, I. Grgić, J.F. Hamilton, T. Hoffmann, Y. Iinuma, M. Jaoui, A. Kahnt, C.J. Kampf, I. Kourtchev, W. Maenhaut, N. Marsden, S. Saarikoski, J. Schnelle-Kreis, J.D. Surratt, S. Szidat, R. Szmigielski, A. Wisthaler, Chem. Rev. 115, 3919 (2015)CrossRefGoogle Scholar
  5. 5.
    M.A. Zawadowicz, A. Abdelmonem, C. Mohr, H. Saathoff, K.D. Froyd, D.M. Murphy, T. Leisner, D.J. Cziczo, Anal. Chem. 87, 12221 (2015)CrossRefGoogle Scholar
  6. 6.
    S.-H. Lee, D.M. Murphy, D.S. Thomson, A.M. Middlebrook, J. Geophys. Res. 107, AAC 1-1 (2002)CrossRefGoogle Scholar
  7. 7.
    J.T. Jayne, D.C. Leard, X. Zhang, P. Davidovits, K.A. Smith, C.E. Kolb, D.R. Worsnop, Aerosol. Sci. Technol. 33, 49 (2000)CrossRefGoogle Scholar
  8. 8.
    E. Gard, J.E. Mayer, B.D. Morrical, T. Dienes, D.P. Fergenson, K.A. Prather, Anal. Chem. 69, 4083 (1997)CrossRefGoogle Scholar
  9. 9.
    F. Gaie-Levrel, S. Perrier, E. Perraudin, C. Stoll, N. Grand, M. Schwell, Atmos. Meas. Tech. 5, 225 (2012)CrossRefGoogle Scholar
  10. 10.
    P.F. DeCarlo, J.R. Kimmel, A. Trimborn, M.J. Northway, J.T. Jayne, A.C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K.S. Docherty, D.R. Worsnop, J.L. Jimenez, Anal. Chem. 78, 8281 (2006)CrossRefGoogle Scholar
  11. 11.
    P.G. Carson, K.R. Neubauer, M.V. Johnston, A.S. Wexler, J. Aerosol. Sci. 26, 535 (1995)CrossRefGoogle Scholar
  12. 12.
    G. Capozza, E. Segoloni, F. Leonori, G.G. Volpi, P. Casavecchia, J. Chem. Phys. 120, 4557 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    S. Geddes, B. Nichols, K. Todd, J. Zahardis, G.A. Petrucci, Atmos. Meas. Tech. 3, 1175 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Goulay, D.L. Osborn, C.A. Taatjes, P. Zou, G. Meloni, S.R. Leone, Phys. Chem. Chem. Phys. 9, 4291 (2007)CrossRefGoogle Scholar
  15. 15.
    E.R. Mysak, K.R. Wilson, M. Jimenez-Cruz, M. Ahmed, T. Baer, Anal. Chem. 77, 5953 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Shu, K.R. Wilson, M. Ahmed, S.R. Leone, Rev. Sci. Instrum. 77, 043106 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    E. Gloaguen, E.R. Mysak, S.R. Leone, M. Ahmed, K.R. Wilson, Int. J. Mass Spectrom. 258, 74 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    C.D. Cappa, K.R. Wilson, Atmos. Chem. Phys. 11, 1895 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    D.L. Che, J.D. Smith, S.R. Leone, M. Ahmed, K.R. Wilson, Phys. Chem. Chem. Phys. 11, 7885 (2009)CrossRefGoogle Scholar
  20. 20.
    N.K. Richards-Henderson, A.H. Goldstein, K.R. Wilson, J. Phys. Chem. Lett. 6, 4451 (2015)CrossRefGoogle Scholar
  21. 21.
    W. Fang, G. Lei, X. Shan, F. Liu, Z. Wang, L. Sheng, J. Electron. Spectrosc. 184, 129 (2011)CrossRefGoogle Scholar
  22. 22.
    W. Fang, L. Gong, X. Shan, F. Liu, Z. Wang, L. Sheng, Anal. Chem. 83, 9024 (2011)CrossRefGoogle Scholar
  23. 23.
    G. Pan, C. Hu, Z. Wang, Y. Cheng, X. Zheng, X. Gu, W. Zhao, W. Zhang, J. Chen, F. Liu, X. Shan, L. Sheng, Rapid Commun. Mass Spectrom. 26, 189 (2012)CrossRefGoogle Scholar
  24. 24.
    G. Pan, C. Hu, M. Huang, Z. Wang, Y. Cheng, Z. Liu, X. Gu, W. Zhao, W. Zhang, J. Chen, F. Liu, X. Shan, L. Sheng, J. Environ. Sci. 24, 2075 (2012)CrossRefGoogle Scholar
  25. 25.
    F. Gaie-Levrel, G.A. Garcia, M. Schwell, L. Nahon, Phys. Chem. Chem. Phys. 13, 7024 (2011)CrossRefGoogle Scholar
  26. 26.
    D. Touboul, F. Gaie-Levrel, G.A. Garcia, L. Nahon, L. Poisson, M. Schwell, M. Hochlaf, J. Chem. Phys. 138, 094203 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    M. Tia, B. Cunha de Miranda, S. Daly, F.O. Gaie-Levrel, G.A. Garcia, I. Powis, L. Nahon, J. Phys. Chem. Lett. 4, 2698 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Dossmann, A. Schwarzenberg, D. Lesage, M. Pérot-Taillandier, C. Afonso, B. Cunha de Miranda, G.A. Garcia, J. Phys. Chem. A 118, 11185 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Tia, B. Cunha de Miranda, S. Daly, F. Gaie-Levrel, G.A. Garcia, L. Nahon, I. Powis, J. Phys. Chem. A 118, 2765 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Nahon, N. de Oliveira, G.A. Garcia, J.-F. Gil, B. Pilette, O. Marcouillé, B. Lagarde, F. Polack, J. Synchrotron Radiat. 19, 508 (2012)CrossRefGoogle Scholar
  31. 31.
    B. Mercier, M. Compin, C. Prevost, G. Bellec, R. Thissen, O. Dutuit, L. Nahon, J. Vac. Sci. Technol. A 18, 2533 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    G.A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80, 023102 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    NIST, Chemical Book. 2008 (cited 2014). Available from:
  34. 34.
    M.P. Tolocka, K.J. Heaton, M.A. Dreyfus, S. Wang, C.A. Zordan, T.D. Saul, M.V. Johnston, Environ. Sci. Technol. 40, 1843 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    U.O. Leeds, MCMv 3.1. Master Chemical MechanismGoogle Scholar
  36. 36.
    T. Baer, P.M. Guyon, in High resolution laser photoionization and photoelectron studies, edited by T. Baer, C.Y. Ng, I. Powis (John Wiley & Sons Ltd, Chichester, 1995)Google Scholar
  37. 37.
    M. Glasius, M. Lahaniati, A. Calogirou, D. Di Bella, N.R. Jensen, J. Hjorth, D. Kotzias, B.R. Larsen, Environ. Sci. Technol. 34, 1001 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Iinuma, O. Böge, T. Gnauk, H. Herrmann, Atmos. Environ. 38, 761 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    M. Camredon, J.F. Hamilton, M.S. Alam, K.P. Wyche, T. Carr, I.R. White, P.S. Monks, A.R. Rickard, W.J. Bloss, Atmos. Chem. Phys. 10, 2893 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    E.R. Mysak, Ph.D. dissertation, University of North Carolina, Chapel Hill, 2006Google Scholar
  41. 41.
    Y. Ma, T. Luciani, R.A. Porter, A.T. Russell, D. Johnson, G. Marston, Phys. Chem. Chem. Phys. 9, 5084 (2007)CrossRefGoogle Scholar
  42. 42.
    Y. Ma, A.T. Russell, G. Marston, Phys. Chem. Chem. Phys. 10, 4294 (2008)CrossRefGoogle Scholar
  43. 43.
    M.M. Galloway, P.S. Chhabra, A.W.H. Chan, J.D. Surratt, R.C. Flagan, J.H. Seinfeld, F.N. Keutsch, Atmos. Chem. Phys. 9, 3331 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    D.W. Turner, Molecular Photoelectron Spectroscopy (John Wiley & Sons Ltd, London, 1970)Google Scholar
  45. 45.
    J.C. Traeger, Int. J. Mass Spectrom. Ion Process. 66, 271 (1985)ADSCrossRefGoogle Scholar
  46. 46.
    A.D. Baker, C. Baker, C.R. Brundle, D.W. Turner, Int. J. Mass Spectrom. Ion Process. 1, 285 (1968)ADSCrossRefGoogle Scholar
  47. 47.
    R. Volkamer, P. Spietz, J. Burrows, U. Platt, J. Photochem. Photobiol. A 172, 35 (2005)CrossRefGoogle Scholar
  48. 48.
    J.F. Hamilton, M.T. Baeza-Romero, E. Finessi, A.R. Rickard, R.M. Healy, S. Peppe, T.J. Adams, M.J.S. Daniels, S.M. Ball, I.C.A. Goodall, P.S. Monks, E. Borras, A. Munoz, Faraday Discuss. 165, 447 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    A.K.Y. Lee, R. Zhao, S.S. Gao, J.P.D. Abbatt, J. Phys. Chem. A 115, 10517 (2011)CrossRefGoogle Scholar
  50. 50.
    C.J. Kampf, R. Jakob, T. Hoffmann, Atmos. Chem. Phys. 12, 6323 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    N. Takegawa, Y. Miyazaki, Y. Kondo, Y. Komazaki, T. Miyakawa, J.L. Jimenez, J.T. Jayne, D.R. Worsnop, J.D. Allan, R.J. Weber, Aerosol. Sci. Technol. 39, 760 (2005)CrossRefGoogle Scholar
  52. 52.
    J. Group, FAQ for AMS Data Users, 2012 (cited 2016). Available from:
  53. 53.
    D.O. De Haan, L.N. Hawkins, J.A. Kononenko, J.J. Turley, A.L. Corrigan, M.A. Tolbert, J.L. Jimenez, Environ. Sci. Technol. 45, 984 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    R. Volkamer, P.J. Ziemann, M.J. Molina, Atmos. Chem. Phys. 9, 1907 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    J. Kruger, G.A. Garcia, D. Felsmann, K. Moshammer, A. Lackner, A. Brockhinke, L. Nahon, K. Kohse-Hoinghaus, Phys. Chem. Chem. Phys. 16, 22791 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • María Teresa Baeza-Romero
    • 1
    Email author
  • Francois Gaie-Levrel
    • 2
  • Ahmed Mahjoub
    • 3
  • Vicente López-Arza
    • 1
  • Gustavo A. Garcia
    • 2
  • Laurent Nahon
    • 2
  1. 1.Escuela de Ingeniería Industrial de Toledo, Universidad de Castilla la ManchaToledoSpain
  2. 2.Synchrotron SOLEIL, L’Orme des MerisiersGif-sur-Yvette CedexFrance
  3. 3.Université Versailles St-Quentin, UPMC Univ. Paris 06, CNRSGuyancourtFrance

Personalised recommendations