Benchmark for two-photon ionization of atoms with generalized Sturmian functions

  • Antonio I. GómezEmail author
  • Gustavo Gasaneo
  • Darío M. Mitnik
  • Marcelo J. Ambrosio
  • Lorenzo U. Ancarani
Regular Article


The description with traditional methods of the single or multiple ionization of atoms and molecules by two or more successive photons requires some special treatment. Difficulties occur when a spatially non-decaying driven term appears in the Schrödinger-like non-homogeneous equation for the scattering wave function. We propose using the intrinsic physical and mathematical properties of generalized Sturmian functions to efficiently deal with the Dalgarno-Lewis second order equation. In contrast to other approaches, our methodology provides a practical way to extract the transition amplitude from the asymptotic behavior of the scattering wave function, and this without requiring any further projection onto some final approximate state. As an illustration, the hydrogen case is studied in details, for both pulsed and monochrome laser radiation fields. The successful comparison with analytical and time-dependent solutions provides a benchmark, and allows us to master the numerical aspects of the methodology. Appropriately chosen generalized Sturmian functions manage to easily reproduce the beat-type asymptotic behavior observed in the photoelectron wave function after absorption by the atom of two successive photons.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    P. Sándor, V. Tagliamonti, A. Zhao, T. Rozgonyi, M. Ruckenbauer, P. Marquetand, T. Weinacht, Phys. Rev. Lett. 116, 063002 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Goetz, A. Karamatskou, R. Santra, C.P. Koch, Phys. Rev. A 93, 013413 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Science 348, 530 (2015)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Öström et al., Science 347, 978 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    L.J. Zipp, A. Natan, P.H. Bucksbaum, Optica 1, 361 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Chini, K. Zhao, Z. Chang, Nat. Photon. 8, 178 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    K.T. Kim, D.M. Villeneuve, P.B. Corkum, Nat. Photon. 8, 187 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J.B. Greenwood, F. Martín, M. Nisoli, Science 346, 336 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C.H. Keitel, C.H. Greene, T. Pfeifer, Science 340,716 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    K. Klünder, J.M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, A. L’Huillier, Phys. Rev. Lett. 106, 143002 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J. Mauritsson, T. Remetter, M. Swoboda, K. Klünder, A. LHuillier, K.J. Schafer, O. Ghafur, F. Kelkensberg, W. Siu, P. Johnsson, M.J.J. Vrakking, I. Znakovskaya, T. Uphues, S. Zherebtsov, M.F. Kling, F. Lepine, E. Benedetti, F. Ferrari, G. Sansone, M. Nisoli, Phys. Rev. Lett. 105, 053001 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    P. Emma, K. Bane, M. Cornacchia, Z. Huang, H. Schlarb, G. Stupakov, D. Walz, Phys. Rev. Lett. 92, 074801 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    C.M. Granados-Castro, L.U. Ancarani, G. Gasaneo, D.M. Mitnik, Adv. Quantum Chem. 73, 3 (2016)CrossRefGoogle Scholar
  14. 14.
    Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, R. Dröner, Nature 405, 658 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    E. Goulielmakis, Z. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer, A.M. Azzeer, M.F. Kling, S.R. Leone, F. Krausz, Nature 466, 739 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M. Holler, F. Schapper, L. Gallmann, U. Keller, Phys. Rev. Lett. 106, 123601 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    C. Ott, A. Kaldun, L. Argenti, P. Raith, K. Meyer, M. Laux, Y. Zhang, A. Blattermann, S. Hagstotz, T. Ding, R. Heck, J. Madroñero, F. Martín, T. Pfeifer, Nature 516, 374 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M.G. Pullen, W.C. Wallace, D.E. Laban, A.J. Palmer, G.F. Hanne, A.N. Grum-Grzhimailo, K. Bartschat, I. Ivanov, A. Kheifets, D. Wells, H.M. Quiney, X.M. Tong, I.V. Litvinyuk, R.T. Sang, D. Kielpinski, Phys. Rev. A 87, 053411 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    D.A. Horner, F. Morales, T.N. Rescigno, F. Martín, W. McCurdy, Phys. Rev. A 76, 030701(R) (2007)ADSCrossRefGoogle Scholar
  20. 20.
    G. Gasaneo, L.U. Ancarani, D.M. Mitnik, J.M. Randazzo, A.L. Frapiccini, F.D. Colavecchia, Adv. Quantum Chem. 67, 153 (2013)CrossRefGoogle Scholar
  21. 21.
    D.M. Mitnik, F.D. Colavecchia, G. Gasaneo, J.M. Randazzo, Comp. Phys. Commun. 182, 1145 (2011)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J.M. Randazzo, D.M. Mitnik, G. Gasaneo, L.U. Ancarani, F.D. Colavecchia, Eur. Phys. J. D 69, 189 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    L. Malegat, H. Bachau, A. Hamido, B. Piraux, J. Phys. B 43, 245601 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    L. Malegat, P. Selles, A. Kazansky, Phys. Rev. A 60, 3667 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Pearson Education Limited, Malaysia, 2003)Google Scholar
  26. 26.
    M. Karplus, H.J. Kolker, J. Chem. Phys. 39, 1493 (1963)ADSCrossRefGoogle Scholar
  27. 27.
    P.W. Langhoff, S.T. Epstein, M. Karplus, Rev. Mod. Phys. 3, 602 (1972)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Palacios, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 76, 043420 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    A. Palacios, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 77, 032716 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    C.M. Granados-Castro, J.L. Sanz-Vicario, J. Phys. B 46, 055601 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    F.H.M. Faisal, Theory of Multiphoton Processes, 2nd edn. (Springer Science & Business Media, New York, 1987)Google Scholar
  32. 32.
    G. Gasaneo, L.U. Ancarani, in PressGoogle Scholar
  33. 33.
    J.M. Harriman, Phys. Rev. 101, 594 (1956)ADSCrossRefGoogle Scholar
  34. 34.
    T.N. Rescigno, V. McKoy, Phys. Rev. A 12, 522 (1975)ADSCrossRefGoogle Scholar
  35. 35.
    J.L. Sanz-Vicario, A. Palacios, J.C. Cardona, H. Bachau, F. Martín, J. Electron Spectrosc. Relat. Phenom. 161, 182 (2007)CrossRefGoogle Scholar
  36. 36.
    D.G. Arbó, private communicationGoogle Scholar
  37. 37.
    E. Karule, B. Moine, J. Phys. B 36, 1963 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Ambrosio, L.U. Ancarani, A.I. Gómez, G. Gasaneo, D.M. Mitnik, submitted to J. Math. Phys.Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Antonio I. Gómez
    • 1
    • 2
    Email author
  • Gustavo Gasaneo
    • 1
    • 2
  • Darío M. Mitnik
    • 2
    • 3
  • Marcelo J. Ambrosio
    • 2
    • 3
  • Lorenzo U. Ancarani
    • 4
  1. 1.Departamento de Física, Universidad Nacional del SurBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto de Astronomía y Física del Espacio (IAFE) and Departamento de Física, Universidad de Buenos AiresEGA Buenos AiresArgentina
  4. 4.Théorie, Modélisation, Simulation, SRSMC, UMR CNRS 7565, Université de LorraineMetzFrance

Personalised recommendations