Advertisement

Mechanism of angular momentum transfer from microwaves to a copper ring

  • Olivier EmileEmail author
  • Ronan Niemiec
  • Christian Brousseau
  • Janine Emile
  • Kouroch Mahdjoubi
  • Wenlong Wei
  • Bo Thide
Regular Article

Abstract

In the exchange of orbital angular momentum between an electromagnetic wave and a copper ring we examine the origin of the Angular Momentum. We then investigate the transfer mechanism between the microwave and the object, and compare it with other mechanisms. We evidence a transfer mechanism based on the reflection of the electromagnetic field on the copper ring. In particular, at a microscopic scale, we show that the electromagnetic field induces alternative electric currents in the ring, with a small drift. Although little, the resistivity of copper leads to a force that rotates the ring. The estimation of the torque, which is of the order of 10-8 Nm, is in good agreement with the experimental measurements. We also show that the transfer of electromagnetic orbital angular momentum to objects could be a way to measure the orbital angular momentum carried by electromagnetic fields, and we discuss possible applications.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    R.A. Beth, Phys. Rev. 48, 471 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    R.A. Beth, Phys. Rev. 50, 115 (1936)ADSCrossRefGoogle Scholar
  3. 3.
    E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, Appl. Phys. Lett. 64, 2209 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    P. Galajda, P. Ormos, Appl. Phys. Lett. 78, 249 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    M. Padgett, R. Bowman, Nat. Photon. 5, 343 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    N. Carrara, Nature 164, 882 (1949)ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Allen, Am. J. Phys. 34, 1185 (1966)ADSCrossRefGoogle Scholar
  8. 8.
    G. Delannoy, O. Emile, A. Le Floch, Appl. Phys. Lett. 86, 081109 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Nature 86, 348 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    B.E. Kane, Phys. Rev. B 82, 115441 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    F. Pedaci, Z.X. Huang, M. van Oene, S. Barland, N.H. Dekker, Nat. Phys. 7, 259 (2011)CrossRefGoogle Scholar
  12. 12.
    H. He, M.E.J. Friese, N.R. Heckenberg, H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    S. Franke-Arnold, L. Allen, M. Padgett, Laser Photon. Rev. 2, 299 (2008)CrossRefGoogle Scholar
  14. 14.
    D.B. Ruffner, D.G. Grier, Phys. Rev. Lett. 108, 173602 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 97, 170406 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    A.M. Yao, M.J. Padgett, Adv. Opt. Photon. 32, 161 (2011)CrossRefGoogle Scholar
  17. 17.
    J.M. Jauch, F. Rohrlich, the theory of photons and electrons (Addison-Wesley, New York, 1955)Google Scholar
  18. 18.
    J.W. Simmons, M.J. Guttmann, States, Waves and Photons (Addison-Wesley, Reading, MA, 1970)Google Scholar
  19. 19.
    L. Allen, M. Padgett, Opt. Commun. 184, 67 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Stewart, Eur. J. Phys. 26, 635 (2005)CrossRefGoogle Scholar
  21. 21.
    O. Emile, C. Brousseau, J. Emile, R. Niemiec, K. Madhjoubi, B. Thidé, Phys. Rev. Lett. 112, 053902 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    K.S. Vul’fson, Sov. Phys. Usp. 30, 724 (1988)CrossRefGoogle Scholar
  23. 23.
    J.D. Kraus, Antennas, 2nd edn. (McGraw-Hill, New York, 1988)Google Scholar
  24. 24.
    Computer Simulation Technology, CST, http://www.cst.com
  25. 25.
    B. Thidé, Electromagnetic Field Theory, 2nd edn. (Dover, NY, 2011), http://www.plasma.uu.se/CED/Book
  26. 26.
    B. Thidé, F. Tamburini, H. Then, C.G. Someda, R.A. Ravanelli, http://arxiv.org/abs/1410.4268 (2014)
  27. 27.
    K. Sudo, J. Hirokawa, M. Ando, Proc. 33rd Eur. Microwave Conf. 3, 935 (2003)CrossRefGoogle Scholar
  28. 28.
    S.J. van Enk, G. Nienhuis, J. Mod. Opt. 41, 963 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    C.E.M. Demore, Z.Y. Yang, A. Volovick, S. Cochran, M.P. MacDonald, G.C. Spalding, Phys. Rev. Lett. 108, 194301 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    C. Konzand, G. Benford, Opt. Commun. 226, 249 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    T.A. Nieminen, Opt. Commun. 235, 227 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    M. Mansuripur, A.R. Zakharian, E.W. Wright, Phys. Rev. A. 84, 033813 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    M. Born, E. Wolf, Principles of optics (Cambridge University Press, 1999)Google Scholar
  34. 34.
    A.A. Kolomenskii, S.N. Jerebtsov, H.A. Schuessler, Opt. Lett. 30, 2019 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986)Google Scholar
  36. 36.
    G. Molina-Terriza, J. Recolons, J.P. Torres, L. Torner, Phys. Rev. Lett. 87, 023902 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    J. Courtial, D.A. Robertson, K. Dholakia, L. Allen, M.J. Padgett, Phys. Rev. Lett. 81, 4828 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    T.A. Nieminen, S.J.W. Parkin, N.R. Heckenberg, H. Rubinsztein-Dunlop, Proc. SPIE 5514, 254 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    H. Rubinsztein-Dunlop, T. Asavei, A.B. Stilgoe, V.L.Y. Loke, R. Vogel, T.A. Nieminen, N.R. Heckenberg, in Optical Nano and Micro Actuator Technology, edited by G.K. Knopf, Y. Otani (CRC Press, 2012), pp. 277–306Google Scholar
  40. 40.
    C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, R. Di Leonard, Nat. Commun. 6, 7855 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    O. Emile, M. le Meur, J. Emile, Phys. Rev. A 89, 013846 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    O. Emile, J. Emile, Opt. Lett. 41, 211 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    F. Devaux, R. Passier, Eur. Phys. J. D 42, 133 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    M. Born, V. Fock, Z. Phys. 51, 165 (1928)ADSCrossRefGoogle Scholar
  45. 45.
    S.L. Neale, M.P. MacDonald, K. Dholakia, T.F. Krauss, Nat. Mater. 4, 530 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    M.J. Padgett, L. Allen, J. Opt. Soc. Am. B 4, S17 (2002)Google Scholar
  47. 47.
    L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, K. Dholakia, Science 292, 912 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    S. Franke-Arnold, J. Leach, M.J. Padgett, V.E. Lembessis, D. Ellinas, A.J. Wright, J.M. Girkin, P. Ohberg, A.S. Arnold, Opt. Express 15, 8619 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    J.W.R. Tabosa, D.V. Petrov, Phys. Rev. Lett. 83, 4967 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    J.F. Brachmann, W.S. Bakr, J. Gillen, A. Peng, M. Greiner, Opt. Express 19, 12984 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    C.T. Schmiegelow, F. Schmidt-Kaler, Eur. Phys. J. D 66, 157 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    P.W. Mattews, Am. J. Phys. 33, 1082 (1965)ADSCrossRefGoogle Scholar
  53. 53.
    S. Franke-Arnold, J. Jeffers, Eur. Phys. J. D 66, 196 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    H. Qassim, F.M. Miatto, J.P. Torres, M.J. Padgett, E. Karimi, R.W. Boyd, J. Opt. Soc. Am. B 31, A20 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    R. Fickler, R. Lapkiewicz, W.N. Plick, M. Krenn, C. Schaeff, S. Ramelow, A. Zeilinger, Science 338, 640 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    V.Yu. Bazhenov, M.S. Soskin, M.V. Vasnetsov, J. Mod. Opt. 39, 985 (1992)ADSCrossRefGoogle Scholar
  57. 57.
    M. Harris, C.A. Hill, P.R. Tapster, J.M. Vaughan, Phys. Rev. A 49, 3119 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    M.P.J. Lavery, M.J. Padgett, in Opical Angular Momentum, edited by D.L. Andrews, M. Babiker (Cambridge University Press, London, 2012)Google Scholar
  59. 59.
    J. Leach, M.J. Padgett, S.M. Barnett, S. Franke-Arnold, J. Courtial, Phys. Rev. Lett. 88, 257901 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    J.M. Hickmann, E.J.S. Fonseca, W.C. Soares, S. Chávez-Cerda, Phys. Rev. Lett. 105, 053904 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    M.E. Anderson, H. Bigman, L.E.E. de Araujo, J.L. Chaloupka, J. Opt. Soc. Am. B 29, 1968 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    O. Emile, J. Emile, Appl. Phys. B 117, 487 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    O. Emile, J. Emile, C. Brousseau, J. Opt. 16, 125703 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    O. Emile, J. Emile, B. de Lesegno, L. Pruvost, C. Brousseau, Europhys. Lett. 111, 34001 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    M. Liu, Eur. Phys. J. D 67, 244 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  67. 67.
    N.R. Heckenberg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, M.J. Wegener, Opt. Quantum Electron. 24, S951 (1992)CrossRefGoogle Scholar
  68. 68.
    M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman, Opt. Commun 96, 123 (1993)ADSCrossRefGoogle Scholar
  69. 69.
    G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, M.J. Padgett, Phys. Rev. Lett. 105, 153601 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    J. Courtial, K. Dholakia, D.A. Robertson, L. Allen, M.J. Padgett, Phys. Rev. Lett. 80, 3217 (1998)ADSCrossRefGoogle Scholar
  71. 71.
    B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T.D. Carozzi, Y.N. Istomin, N.H. Ibragimov, R. Khanitova, Phys. Rev. Lett. 99, 087701 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato, New J. Phys. 14, 033001 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    F. Tamburini, B. Thidé, G. Molina-Terriza, G. Anzolin, Nat. Phys. 7, 195 (2011)CrossRefGoogle Scholar
  74. 74.
    N.M. Elias, Astron. Astrophys. 541, 101 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    M. Bass, P.A. Franken, J.F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962)ADSCrossRefGoogle Scholar
  76. 76.
    R.W. Boyd, Nonlinear optics, 3rd edn. (Academic Press, NY, 2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Olivier Emile
    • 1
    Email author
  • Ronan Niemiec
    • 1
    • 2
  • Christian Brousseau
    • 2
  • Janine Emile
    • 3
  • Kouroch Mahdjoubi
    • 2
  • Wenlong Wei
    • 2
  • Bo Thide
    • 4
  1. 1.Université Rennes 1Rennes CedexFrance
  2. 2.UMR CNRS 6164 IETR, Université Rennes 1Rennes CedexFrance
  3. 3.UMR CNRS 6251 IPR, Université Rennes 1Rennes CedexFrance
  4. 4.Swedish Institute of Space Physics, Ångström LaboratoryUppsalaSweden

Personalised recommendations