Advertisement

Target heating due to the shock produced hot electrons in the shock ignition scheme

  • Somayeh RezaeiEmail author
  • Amir Hossein Farahbod
  • Mohammad Jafar Jafari
  • Samad Sobhanian
Regular Article
  • 87 Downloads

Abstract

Hot electrons are produced as a result of ignitor-corona interaction of the shock ignition scheme. In the present paper, penetration depth and energy deposition of such energetic electrons have been qualitatively discussed applying Monte Carlo simulations. Target real conditions for propagating hot electrons were taken from 1-D hydrodynamic simulations. It has been found that compressing target up to 10.4 ns helps to stop hot electrons at a proper distance thus, preventing fuel preheating. In addition, embedding hot electron energy source into the hydrodynamic code, changes of parameters p, ρ and ρR are calculated. Monoenergetic electron beams have been launched at different times of target compression. The simulation results indicate the creation of high ablation pressure as well as maximum shell areal density by a 50 keV monoenergetic electron beam with intensity 1 PW/cm2 irradiated on the compressed target at a proper time which indeed improves the implosion processes.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    R. Betti, C. Zhou, K. Anderson, L. Perkins, W. Theobald, A. Solodov, Phys. Rev. Lett. 98, 155001 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    M. Lafon, X. Ribeyre, G. Schurtz, Phys. Plasmas 17, 052704 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    M. Lafon, X. Ribeyre, G. Schurtz, Phys. Plasmas 20, 022708 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    X. Ribeyre, M. Lafon, G. Schurtz, M. Olazabal-Loumé, J. Breil, S. Galera, S. Weber, Plasma Phys. Control. Fusion 51, 124030 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Atzeni, A. Marocchino, A. Schiavi, G. Schurtz, New J. Phys. 15, 045004 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    O. Klimo, S. Weber, V. Tikhonchuk, J. Limpouch, Plasma Phys. Control. Fusion 52, 055013 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    V. Smalyuk et al., Phys. Rev. Lett. 100, 185005 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    O. Klimo, V. Tikhonchuk, X. Ribeyre, G. Schurtz, C. Riconda, S. Weber, J. Limpouch, Phys. Plasmas 18, 082709 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    O. Klimo, V. Tikhonchuk, Plasma Phys. Control. Fusion 55, 095002 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    P. Nicolaï, J.L. Feugeas, T. Nguyen-bui, V. Tikhonchuk, L. Antonelli, D. Batani, Y. Maheut, Phys. Plasmas 22, 042705 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    R. Nora et al., Phys. Rev. Lett. 114, 045001 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    P. Koester et al., Plasma Phys. Control. Fusion 55, 124045 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    T. Pisarczyk et al., Laser Particle Beams 33, 221 (2015)CrossRefGoogle Scholar
  15. 15.
    D. Batani et al., Phys. Plasmas 21, 032710 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J. Badziak et al., Laser Particle Beams 33, 561 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Weber, C. Riconda, High Power Laser Sci. Eng. 3, e6 (2015)CrossRefGoogle Scholar
  18. 18.
    E.L. Aisa, X. Ribeyre, S. Gus’kov, P. Nicolaï, V. Tikhonchuk, Phys. Plasmas 22, 102704 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    T.E. Fox, A.P.L. Robinson, J. Pasley, Phys. Plasmas 20, 122707 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A. Bell, M. Tzoufras, Plasma Phys. Control. Fusion 53, 045010 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    S. Gus’kov, X. Ribeyre, M. Touati, J.L. Feugeas, P. Nicolaï, V. Tikhonchuk, Phys. Rev. Lett. 109, 255004 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    X. Ribeyre, S. Gus’kov, J.L. Feugeas, P. Nicolaï, V. Tikhonchuk, Phys. Plasmas 20, 062705 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    P. Nicolaï, J.L. Feugeas, M. Touati, X. Ribeyre, S. Gus’kov, V. Tikhonchuk, Phys. Rev. E 89, 033107 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M.J. Jafari, A.H. Farahbod, S. Rezaei, Eur. Phys. J. D 70, 1 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Colaïtis, G. Duchateau, X. Ribeyre, Y. Maheut, G. Boutoux, L. Antonelli, P. Nicolaï, D. Batani, V. Tikhonchuk, Phys. Rev. E 92, 041101 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S. Atzeni, A. Schiavi, J. Davies, Plasma Phys. Control. Fusion 51, 015016 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    D. Pines, D. Bohm, Phys. Rev. 85, 338 (1952)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    V.V. Val’Chuk, N.B. Volkov, A.P. Yalovets, Fizika Plazmy 21, 167 (1995)Google Scholar
  29. 29.
    C.K. Li, R. Petrasso, Phys. Rev. E 70, 067401 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    A. Solodov, R. Betti, Phys. Plasmas 15, 042707 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    R. Ramis, J. Meyer-ter-Vehn, J. Ramírez, Comput. Phys. Commun. 180, 977 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    A. Kemp, J. Meyer-ter-Vehn, Nucl. Instrum. Methods Phys. Res. A 415, 674 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    S. Eliezer, The interaction of high-power lasers with plasmas (CRC Press, 2002)Google Scholar
  35. 35.
    O. Renner, M. Šmíd, D. Batani, L. Antonelli, Plasma Phys. Control. Fusion 58, 075007 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    R. Fabbro, C. Max, E. Fabre, Phys. Fluids 28, 1463 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    D. Batani et al., Nucl. Fusion 54, 054009 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Somayeh Rezaei
    • 1
    • 2
    Email author
  • Amir Hossein Farahbod
    • 1
  • Mohammad Jafar Jafari
    • 1
    • 2
  • Samad Sobhanian
    • 3
  1. 1.Plasma Physics Research SchoolTehranIran
  2. 2.Department of Energy Engineering and PhysicsAmirkabir University of TechnologyTehranIran
  3. 3.Department of PhysicsUniversity of TabrizTabrizIran

Personalised recommendations