Stopping and straggling of H and He in ZnO

  • Raul C. Fadanelli
  • Chiara D. Nascimento
  • Claudia C. Montanari
  • Julio C. Aguiar
  • Dario Mitnik
  • Andrzej Turos
  • Elzbieta Guziewicz
  • Moni Behar
Regular Article

Abstract

We present experimental and theoretical values for the energy loss of H and He ions in Zinc oxide, in mean value (stopping per unit path length) and mean square value (energy loss straggling). The measurements were carried out using the Rutherford Backscattering technique for (300–2000) keV H ions and (300–5000) keV He ions. Present experimental data are the first set of stopping and straggling values in this oxide. The theoretical research was encouraged considering the molecular description of ZnO as crystal solid using the density functional theory. The energy loss calculations for H and He ions with different charge states were performed with the shelwise local plasma approximation (SLPA). The molecular versus the Bragg-rule description is also discussed. The equilibrium charge state of He inside ZnO is analyzed based on the present stopping measurements, and a semiempirical charge state distribution is proposed. Present experimental and theoretical values show good agreement for both the stopping and the straggling. We also compare our data with the SRIM2013 and with CasP5.2 values.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    Handbook of Zinc Oxide and Related Materials, edited by Z.C. Feng (CRC Press, Taylor and Francis Group), Vol. II, pp. 435-484Google Scholar
  2. 2.
    V.A. Demidenko E.I. Gorokhova, I.V. Khodyuk, O.A. Khristich, S.B. Mikhrin, P.A. Rodnyi, Radiat. Meas. 42, 549 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Dosmailov, L.N. Leonat, J. Patek, D. Roth, P. Bauer, M.C. Scharber, N.S. Sariciftci, J.D. Pedarniga, Thin Solid Films 591, 97104 (2015)CrossRefGoogle Scholar
  4. 4.
    P.J. Simpson, R. Tjossem, A.W. Hunt, K.G. Lynn, V. Munné, Nucl. Instrum. Meth. Phys. Res. A 505, 82 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    H. Morkoc, U. Özgür, Zinc Oxide, Fundamental, Materials and Device Technology (Wiley-VCH Verlag GmbH&Co KGaA, Weinheim, 2009), Chap. 1Google Scholar
  6. 6.
    G. Vampa, T.J. Hammond, N. Thiré, B.E. Schmidt, F. Légaré, C.R. McDonald, T. Brabec, D.D. Klug, P.B. Corkum, Phys. Rev. Lett. 115, 193603 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    H. Paul, Stopping Power for Light Ions. https://www-nds.iaea.org/stopping/
  8. 8.
    H. Paul, A. Schinner, Nucl. Instrum. Meth. Phys. Res. B 227, 461 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    E.D. Cantero et al., Nucl. Instrum. Meth. Phys. Res. B 287, 1 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Behar, R.C. Fadanelli, L.C.C.M. Nagamine, E.D. Cantero, G.H. Lantschner, J.C. Eckardt, N.R. Arista, C.D. Nascimento, R. Garcia-Molina, I. Abril, Eur. Phys. J. D 68, 194 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    I. Abril, M. Behar, R. Garcia-Molina, R.C. Fadanelli, L.C.C.M. Nagamine, P.L. Grande, L. Schünemann, C.D. Denton, N.R. Arista, E.B. Saitovitch, Eur. Phys. J. D 54, 65 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Behar, R.C. Fadanelli, I. Abril, R. Garcia-Molina, C.D. Denton, L.C.C.M. Nagamine, N.R. Arista, Phys. Rev. A 80, 062901 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Behar, R.C. Fadanelli, I. Abril, R. Garcia-Molina, L.C.C.M. Nagamine, Eur. Phys. J. D 64, 297 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Behar, C.D. Denton, R.C. Fadanelli, I. Abril, E.D. Cantero, R. Garcia-Molina, L.C.C.M. Nagamine, Eur. Phys. J. D 59, 209 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S.P. Limandri, R.C. Fadanelli, M. Behar, L.C.C.M. Nagamine, J.M. Fernández-Varea, I. Abril, R. Garcia-Molina, C.C. Montanari, J.C. Aguiar, D. Mitnik, J.E. Miraglia, N.R. Arista, Eur. Phys. J. D 68, 194 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    R.C. Fadanelli, M. Behar, L.C.C.M. Nagamine, M. Vos, N.R. Arista, C.D. Nascimento, R. Garcia-Molina, I. Abril, J. Phys. Chem. C 119, 20561 (2015)CrossRefGoogle Scholar
  17. 17.
    W.H. Bragg, R. Kleeman, Philos. Mag. 10, 318 (1905)CrossRefGoogle Scholar
  18. 18.
    S. Paredes, C. Illescas, L. Méndez, Eur. Phys. J. D 69, 178 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    L.N. Trujillo-López, C. Martínez-Flores, R. Cabrera-Trujillo, Nucl. Instrum. Meth. Phys. Res. B 313, 5 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    H. Paul, A. Schinner, Nucl. Instrum. Meth. Phys. Res. B 249, 1 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J.F. Ziegler, J.M. Manoyan, Nucl. Instrum. Meth. Phys. Res. B 35, 215 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    J.F. Ziegler, J.M. Manoyan, SRIM code, http://www.srim.org/
  23. 23.
    C.C. Montanari, J.E. Miraglia, Theory of Heavy Ion Collision Physics in Hadron Therapy, in Advances in Quantum Chemistry, edited by Dz. Belkic (Elsevier, Amsterdam, 2013), Chap. 7, pp. 165-201.Google Scholar
  24. 24.
    E.D. Cantero, R.C. Fadanelli, C.C. Montanari, M. Behar, J.C. Eckardt, G.H. Lantschner, J.E. Miraglia, N.R. Arista, Phys. Rev. A 79, 042904 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    C.C. Montanari, C.D. Archubi, D.M. Mitnik, J.E. Miraglia, Phys. Rev. A 79, 032903 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    E. Guziewicz, A. Turos, A. Stonert, D. Snigurenko, B.S. Witkowski, R. Diduszko, M. Behar, Thin Solid Films 612, 337 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).Google Scholar
  28. 28.
    Z.H. Levine, S.G. Louie, Phys. Rev. B 25, 6310 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    J.D. Fuhr, V.H. Ponce, F.J. García de Abajo, P.M. Echenique, Phys. Rev. B 57, 9329 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    J.E. Miraglia, M.S. Gravielle, Phys. Rev. A 78, 052705 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    J.E. Miraglia, M.S. Gravielle, Phys. Rev. A 81, 042709 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    J.E. Miraglia, Phys. Rev. A 79, 022708 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    U. Kadhane, C.C. Montanari, L. Tribedi, J. Phys. B 36, 3043 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    C.C. Montanari, J.E. Miraglia, J. Phys. B 47, 015201 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    C.C. Montanari, J.E. Miraglia, AIP Conf. Proc. 1525, 259 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    C.C. Montanari, J.E. Miraglia, S. Heredia-Avalos, R. Garcia-Molina, I. Abril, Phys. Rev. A 75, 022903 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    C.C. Montanari, J.E. Miraglia, M. Behar, P.F. Duarte, N.R. Arista, J.C. Eckardt, G.H. Lantschner, Phys. Rev. A 77, 042901 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)ADSCrossRefGoogle Scholar
  39. 39.
    G. Schiwietz, P.L. Grande, Nucl. Instrum. Meth. B 175-177, 125 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    G. Schiwietz, P.L. Grande, CasP code, available online in http://www.casp-program.org/
  41. 41.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and Range of ions in solids (Pergamon Press, 1985)Google Scholar
  42. 42.
    C. Schmitt, J. LaVerne, D. Robertson, M. Bowers, W. Lu, P. Collon, Phys. Rev. A 80 052711 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    C. Schmitt, J. LaVerne, D. Robertson, M. Bowers, W. Lu, P. Collon, Nucl. Instrum. Meth. Phys. Res. B 268 1551 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    C. Schmitt, J. LaVerne, D. Robertson, M. Bowers, W. Lu, P. Collon, Nucl. Instrum. Meth. Phys. Res. B 269, 721 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    R.N. Sagaidak, V.K. Utyonkov, S.N. Dmitriev, Nucl. Instrum. Meth. B 365, 447 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    P. Sigmund, A. Schinner, Eur. Phys. J. D 68, 318 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    P. Sigmund, A. Schinner, Nucl. Instrum. Meth. Phys. Res. B (2016), in press, DOI:10.1016/j.nimb.2015.12.041
  48. 48.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  50. 50.
    CRC Handbook of Chemistry and Physics, edited by D.R. Lide, 89th edn. (CRC Press, Boca Raton, 2009)Google Scholar
  51. 51.
    H.K. Kim, S.H. Han, T.Y. Seong, W.K. Choi, J. Electrochem. Soc. 148, G114 (2001)CrossRefGoogle Scholar
  52. 52.
    A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Phys. Rev. B 80, 035112 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    A. Mang, K. Reimann, St. Rübenacke, Solid State Commun. 94, 251 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    V. Kumar, R.G. Singh, L.P. Purohit, F. Singh, Adv. Mat. Lett. 4, 423 (2013)CrossRefGoogle Scholar
  55. 55.
    R. Kumar, M.C. Mishra, B.K. Sharma, V. Vyas, G. Sharma, Electron. Mater. Lett. 9, 19 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    J.C. Aguiar, D. Mitnik, H.O. Di Rocco, J. Phys. Chem. Solids 83, 64 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    M. Vos, Nucl. Instrum. Meth. Phys. Res. B 366, 6 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    G. Blondiaux, M. Valladon, K. Ishii, J.L. Debrun, Nucl. Instrum. Meth. 168, 29 (1980)ADSCrossRefGoogle Scholar
  59. 59.
    G. Schiwietz, P.L. Grande, Nucl. Instrum. Meth. Phys. Res. B 153, 1 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    G. Schiwietz, P.L. Grande, Nucl. Instrum. Meth. B 273, 1 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    G. Schiwietz, P.L. Grande, Phys. Rev. A 84, 052703 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    N. Bohr, Philos. Mag. 30, 581 (1915)CrossRefGoogle Scholar
  63. 63.
    A.F. Lifschitz, N.R. Arista, Phys. Rev. A 69, 012902 (2004)ADSCrossRefGoogle Scholar
  64. 64.
    P. Sigmund, Particle Penetration and Radiation Effects, Penetration of atomic and molecular ions (Springer, Switzerland, 2014), Vol. 2Google Scholar
  65. 65.
    W.E. Lamb, Phys. Rev. 58, 696 (1940)ADSCrossRefGoogle Scholar
  66. 66.
    H.D. Betz, Rev. Mod. Phys. 44, 465 (1972)ADSCrossRefGoogle Scholar
  67. 67.
    K.X. To, R. Drouin, Nucl. Instrum. Meth. 160, 461 (1978)Google Scholar
  68. 68.
    A. Itoh, H. Tsuchida, T. Majima, A. Yogo, A. Ogawa, Nucl. Instrum. Meth. Phys. Res. B 159, 22 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Raul C. Fadanelli
    • 1
  • Chiara D. Nascimento
    • 1
  • Claudia C. Montanari
    • 2
  • Julio C. Aguiar
    • 3
  • Dario Mitnik
    • 2
  • Andrzej Turos
    • 4
    • 5
  • Elzbieta Guziewicz
    • 6
  • Moni Behar
    • 1
  1. 1.Laboratorio de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Instituto de Astronomía y Física del Espacio (CONICET-UBA), and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.Autoridad Regulatoria Nuclear, Av. Libertador 8250, C1429BNPBuenos AiresArgentina
  4. 4.Institute of Electronic Materials TechnologyWarsawPoland
  5. 5.National Centre for Nuclear Research, Soltana 7OtwockPoland
  6. 6.Institute of Physics, Polish Academy of SciencesWarsawPoland

Personalised recommendations