Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide

  • Rachel M. Thorman
  • Ragnar BjornssonEmail author
  • Oddur IngólfssonEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering


Motivated by the current interest in low energy electron induced fragmentation of organometallic complexes in focused electron beam induced deposition (FEBID) we have evaluated different theoretical protocols for the calculation of thermochemical threshold energies for DEA to the organometallic complex π-allyl ruthenium (II) tricarbonyl bromide. Several different computational methods including density functional theory (DFT), hybrid-DFT and coupled cluster were evaluated for their ability to predict these threshold energies and compared with the respective experimental values. Density functional theory and hybrid DFT methods were surprisingly found to have poor reliability in the modelling of several DEA reactions; however, the coupled cluster method LPNO-pCCSD/2a was found to produce much more accurate results. Using the local correlation pair natural orbital (LPNO) methodology, high level coupled cluster calculations for open-shell systems of this size are now affordable, paving the way for reliable theoretical DEA predictions of such compounds.

Graphical abstract


  1. 1.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vaccum Sci. Technol. B 26, 1197 (2008)CrossRefGoogle Scholar
  2. 2.
    W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J. Schaefer, J. Hoelzl, Thin Solid Films 13, 81 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    A.P. Knights, P.G. Coleman, Appl. Surf. Sci. 85, 43 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit, Microelectron. Eng. 61-62, 693–699 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Botman, D.A.M. de Winter, J.J.L. Mulders, J. Vaccum Sci. Technol. B 26, 2460 (2008)CrossRefGoogle Scholar
  7. 7.
    R.M. Thorman, T.P. Kumar, R., D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015)CrossRefGoogle Scholar
  8. 8.
    O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Allan, J. Chem. Phys. 134, 204309 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Angew. Chem. Int. Ed. Engl. 50, 9475 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    I. Bald, J. Langer, P. Tegeder, O. Ingólfsson, Int. J. Mass Spectrom. 277, 4 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    R.M. Thorman, J.A. Brannaka, L. McElwee-White, O. Ingólfsson (in preparation)Google Scholar
  15. 15.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    L.M.J. Huntington, M. Nooijen, J. Chem. Phys. 133, 184109 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    L.M.J. Huntington, A. Hansen, F. Neese, M. Nooijen, J. Chem. Phys. 136, 064101 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    F. Neese, A. Hansen, D.G. Liakos, J. Chem. Phys. 131, 064103 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012)CrossRefGoogle Scholar
  23. 23.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)CrossRefGoogle Scholar
  24. 24.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)CrossRefGoogle Scholar
  26. 26.
    E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99, 4597 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    C. van Wüllen, J. Chem. Phys. 109, 392 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    D.A. Pantazis, X.-Y. Chen, C.R. Landis, F. Neese, J. Chem. Theory Comput. 4, 908 (2008)CrossRefGoogle Scholar
  29. 29.
    T.H. Dunning, J. Chem. Phys. 90, 1007 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    R.A. Kendall, T.H. Dunning, R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    K.A. Peterson, D. Figgen, M. Dolg, H. Stoll, J. Chem. Phys. 126, 124101 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    K.A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 119, 11113 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    F. Neese, J. Am. Chem. Soc. 128, 10213 (2006)CrossRefGoogle Scholar
  34. 34.
    E.H. Bjarnason, B. Ómarsson, S. Engmann, F.H. Ómarsson, O. Ingólfsson, Eur. Phys. J. D 68, 121 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    J.A. Spencer, J.A. Brannaka, M. Barclay, L. McElwee-White, D.H. Fairbrother, J. Phys. Chem. C 119, 15349 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2, 1282 (2006)CrossRefGoogle Scholar
  37. 37.
    M.P. Waller, H. Braun, N. Hojdis, M. Bühl, J. Chem. Theory Comput. 3, 2234 (2007)CrossRefGoogle Scholar
  38. 38.
    M. Bühl, C. Reimann, D.A. Pantazis, T. Bredow, F. Neese, J. Chem. Theory Comput. 4, 1449 (2008)CrossRefGoogle Scholar
  39. 39.
    M.M. Quintal, A. Karton, M.A. Iron, A.D. Boese, J.M. Martin, J. Phys. Chem. A 110, 709 (2006)CrossRefGoogle Scholar
  40. 40.
    C.A. Jiménez-Hoyos, B.G. Janesko, G.E. Scuseria, J. Phys. Chem. A 113, 11742 (2009)CrossRefGoogle Scholar
  41. 41.
    T. Weymuth, E.P.A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10, 3092 (2014)CrossRefGoogle Scholar
  42. 42.
    C. Blondel, P. Cacciani, C. Delsart, R. Trainham, Phys. Rev. A 40, 3698 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    C. Riplinger, P. Pinski, U. Becker, E.F. Valeev, F. Neese, J. Chem. Phys. 144, 024109 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Science Institute and Department of Chemistry, University of IcelandReykjavíkIceland

Personalised recommendations