Structure and energetics in dissociative electron attachment to HFeCo3(CO)12

  • Ragesh Kumar T P
  • Sven Barth
  • Ragnar Bjornsson
  • Oddur Ingólfsson
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering


Here we report structural parameters on the heteronuclear transition metal complex HFeCo3(CO)12 and its anion formed upon electron attachment, as well as the thermochemical thresholds for sequential CO loss and the loss of the apical group (as Fe(CO)- 3 and Fe(CO)- 4). Geometrical parameters from single crystal X-ray diffraction are compared with calculated values from density functional theory calculations, for the neutral and anionic ground state of this transition metal cluster. Further, experimental appearance energies for sequential CO loss and the formation of Fe(CO)- 3 and Fe(CO)- 4 are compared to the respective calculated threshold values. Geometry optimizations were performed at the BP86/def2-TZVP level of theory while the threshold energies were calculated at the PBE0/ma-def2-TZVP level of theory. The SOMO of the anion is found to have a clear Fe-Co anti-bonding character resulting in elongation of the Fe-Co bonds and the transformation of one of the terminal Co-CO groups to a bridging Co-CO-Fe group upon electron attachment. The thermochemical threshold PBE0 calculations are concordant with the observed appearance energies and structural parameters from single crystal X-ray diffraction for the neutral molecule are well reproduced at the BP86/def2-TZVP level of theory.

Graphical abstract

Supplementary material


  1. 1.
    B.C. Gates, L. Guczi, H. Knözinger, Metal clusters in catalysis (Elsevier, Amsterdam, 1986)Google Scholar
  2. 2.
    M. Moskovits, Ann. Rev. Phys. Chem. 42, 465 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    C.L. Czekaj-Korn, G.L. Geoffroy, Transformation of Organometallics into Common and Exotic Materials: Design and Activation 141, 157 (1988)CrossRefGoogle Scholar
  4. 4.
    F. Porrati, M. Pohlit, J. Müller, S. Barth, F. Biegger, C. Gspan, H. Plank, M. Huth, Nanotechnology 26, 475701 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    M. Winhold, C.H. Schwalb, F. Porrati, R. Sachser, A.S. Frangakis, B. Kämpken, A. Terfort, N. Auner, M. Huth, ACS nano 5, 9675 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Porrati, E. Begun, M. Winhold, C.H. Schwalb, R. Sachser, A. Frangakis, M. Huth, Nanotechnology 23, 185702 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    F. Porrati, B. Kämpken, A. Terfort, M. Huth, J. Appl. Phys. 113, 053707 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    R.M. Thorman, R. Kumar T P, D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Silvis-Cividjian, C. Hagen, L. Leunissen, P. Kruit, Microelectron. Eng. 61, 693 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Botman, D. De Winter, J. Mulders, J. Vacuum Sci. Technol. B 26, 2008 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Angew. Chem. Int. Ed. 50, 9475 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Allan, J. Chem. Phys. 134, 204309 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012)CrossRefGoogle Scholar
  15. 15.
    K. Wnorowski, M. Stano, C. Matias, S. Denifl, W. Barszczewska, Š. Matejčík, Rapid Commun. Mass Spectrom. 26, 2093 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Wnorowski, M. Stano, W. Barszczewska, A. Jówko, Š. Matejčík, Int. J. Mass Spectrom. 314, 42 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    S. Engmann, B. Ómarsson, M. Lacko, M. Stano, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 234309 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    P. Papp, S. Engmann, M. Kučera, M. Stano, Š. Matejčík, O. Ingólfsson, Int. J. Mass Spectrom. 356, 24 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    M. Lacko, P. Papp, K. Wnorowski, Š. Matejčík, Eur. Phys. J. D 69, 84 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    P. Chini, L. Colli, M. Peraldo, Gazz. Chim. Ital. 90, 1005 (1960)Google Scholar
  22. 22.
    E. Guglielminotti, D. Osella, P. Stanghellini, J. Organomet. Chem. 281, 291 (1985)CrossRefGoogle Scholar
  23. 23.
    R.G. Teller, R.D. Wilson, R.K. McMullan, T.F. Koetzle, R. Bau, J. Am. Chem. Soc. 100, 3071 (1978)CrossRefGoogle Scholar
  24. 24.
    G.L. Geoffroy, R.A. Epstein, Inorganic Chem. 16, 2795 (1977)CrossRefGoogle Scholar
  25. 25.
    J.C. Kotz, J.V. Petersen, R.C. Reed, J. Organomet. Chem. 120, 433 (1976)CrossRefGoogle Scholar
  26. 26.
    B.M. Peake, B.H. Robinson, J. Simpson, D.J. Watson, Inorganic Chem. 16, 405 (1977)CrossRefGoogle Scholar
  27. 27.
    C.E. Strouse, L.F. Dahl, J. Am. Chem. Soc. 93, 6032 (1971)CrossRefGoogle Scholar
  28. 28.
    G.F. Holland, D.E. Ellis, W.C. Trogler, J. Am. Chem. Soc. 108, 1884 (1986)CrossRefGoogle Scholar
  29. 29.
    G.F. Holland, D.E. Ellis, D.R. Tyler, H.B. Gray, W.C. Trogler, J. Am. Chem. Soc. 109, 4276 (1987)CrossRefGoogle Scholar
  30. 30.
    W.C. Trogler, Acc. Chem. Res. 23, 239 (1990)CrossRefGoogle Scholar
  31. 31.
    J.P. Lomont, S.C. Nguyen, C.B. Harris, Organometallics 31, 4031 (2012)CrossRefGoogle Scholar
  32. 32.
    G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Determination, University of Göttingen, Göttingen (1997)Google Scholar
  33. 33.
    E.H. Bjarnason, B. Ómarsson, S. Engmann, F.H. Ómarsson, O. Ingólfsson, Eur. Phys. J. D 68, 121 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)Google Scholar
  35. 35.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)CrossRefGoogle Scholar
  38. 38.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    J. Zheng, X. Xu, D.G. Truhlar, Theoret. Chem. Acc. 128, 295 (2011)CrossRefGoogle Scholar
  41. 41.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)CrossRefGoogle Scholar
  43. 43.
    F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356, 98 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)CrossRefGoogle Scholar
  45. 45.
    I. Bald, J. Langer, P. Tegeder, O. Ingólfsson, Int. J. Mass Spectrom. 277, 4 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    R. Kumar T P, S. Barth, R. Bjornsson, O. Ingólfsson (2016) (In preparation)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Science Institute and Department of Chemistry, University of IcelandReykjavíkIceland
  2. 2.Vienna University of Technology, Institute of Materials ChemistryViennaAustria

Personalised recommendations