Structural and oxidation properties of CoNi nanowires

  • Faustino Aguilera-Granja
  • Juan Martin Montejano-CarrizalesEmail author
  • Eugenio E. Vogel
Regular Article


Nanocylinders made out of CoNi alloys offer interesting properties which are dependent on the proportion of the constituent elements, the preparation methods and the thermal history of the sample. In the present paper we calculate the structural and electronic properties of Co1−x Ni x alloys at subnanoscopic level. SIESTA program is used to relax the structures following standard protocols. Relative positions of the minority atoms (Ni) are varied aiming to find the lowest energy configurations. It is found that Ni atoms minimize energy at surface positions mainly at the ends of the cylinders. The implications of this result in the magnetic properties of the systems are discussed. The work is continued to study the oxidation properties of the different possible surface compositions. It is found that surfaces of Ni are more resistant to oxidation than Co ones. The combination of the two previous results can lead to cylinders with high magnetic coercivity and relatively high resistance to oxidation.

Graphical abstract


Clusters and Nanostructures 


  1. 1.
    K. Nielsch, B.H.J. Stadler, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronller, S. Parkin (John Wiley & Sons, Chichester 2007), Vol. 4: Novel Materials, pp. 2227−2255Google Scholar
  2. 2.
    E.E. Vogel, P. Vargas, D. Altbir, J. Escrig, in Handbook of Nanophysics, edited by Klaus D. Sattler (CRC Press, 2010), Vol. 4, Art. 14, pp. 1−12Google Scholar
  3. 3.
    J. Cantu-Valle, I. Betancourt, J.E. Sanchez, F. Ruiz-Zepeda, M.M. Maqableh, F. Mendoza-Santoyo, B.J.H. Stadler, A. Ponce, J. Appl. Phys. 118, 024302 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    O. Yalcin, G. Kartopu, H. Cetin, A.S. Demiray, S. Kazan, J. Magn. Magn. Mater. 373, 207 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    H. Pan, J.B. Yi, B.H. Liu, S. Thongmee, J. Ding, Y.P. Feng, J.Y. Lin, Solid State Phenomena, 111, 123 (2006)CrossRefGoogle Scholar
  6. 6.
    J. Vilana, D. Escalera-Lopez, E. Gomez, E. Valles, J. Alloys Compd. 646, 669 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Liebana-Vinas, U. Wiedwald, A. Elsukova, J. Perl, B. Zingsem, A.S. Semisalova, V. Salgueirino, M. Spasova, M. Farle, Chem. Mater. 27, 4015 (2015)CrossRefGoogle Scholar
  8. 8.
    Y.G. Kwag, J.K. Ha, H.S. Kim, H.J. Cho, K.K. Cho, J. Nanosci. Nanotechnol. 14, 8930 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Cao, G.Y. Wei, H.L. Ge, Y.D. Yu, Int. J. Electrochem. Sci. 9, 5272 (2014)Google Scholar
  10. 10.
    J. Garcia, V. Vega, L. Iglesias, V.M. Prida, B. Hernando, E.D. Barriga-Castro, R. Mendoza-Resendez, C. Luna, D. Gorlitz, K. Nielsch, Phys. Stat. Sol. A 211, 1041 (2014)CrossRefGoogle Scholar
  11. 11.
    C.Y. Yang, Y.C. Tseng, H.J. Lin, J. Nanopart. Res. 15, 1542 (2013)CrossRefGoogle Scholar
  12. 12.
    C.Y. Yang, L.W. Wang, P.A. Chen, H.J. Lin, C.H. Lai, Y.C. Tseng, J. Appl. Phys. 114, 063902 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    K. Maaz, S.H. Kim, M.H. Jung, G.H. Kim, J. Alloys Compd. 520, 272 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Najafi, S. Soltanian, H. Danyali, R. Hallaj, A. Salimi, S.M. Elahi, P. Servati, J. Mater. Res. 27, 2382 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    R. Lavin, C. Gallardo, J.L. Palma, J. Escrig, J.C. Denardin, J. Magn. Magn. Mater. 324, 2360 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J. Escrig, P. Landeros, D. Altbir, E.E. Vogel, P. Vargas, J. Magn. Magn. Mater. 308, 233 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    J. Escrig, P. Landeros, D. Altbir, E.E. Vogel, J. Magn. Magn. Mater. 310, 2448 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    J. Jalilian, H. Zahrabi, J. Jalilian, F. Soofivand, S. Farshadfar, S. Naderizadeh, N. Rahimi, Comput. Theor. Chem. 979, 10 (2012)CrossRefGoogle Scholar
  19. 19.
    S.J. Blundell, F.L. Pratt, J. Phys.: Condens. Matter 16, R771 (2004)ADSGoogle Scholar
  20. 20.
    F. Aguilera-Granja, J.M. Montejano-Carrizales, E.E. Vogel, Eur. Phys. J. D 68, 38 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Soler., E. Artacho, J.D. Gale., A. García, J. Junquera, P. Ordejon, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)ADSGoogle Scholar
  22. 22.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd edn. (Cambridge University Press, Cambridge, 1992)Google Scholar
  26. 26.
    F. Aguilera-Granja, A. García-Fuente, A. Vega, Phys. Rev. B 78, 134425 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    F. Ducastelle, in Order and Phase Stability in Alloys, edited by F.R. de Boer, D.G. Petifor (North Holland, Amsterdam, 1991)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Faustino Aguilera-Granja
    • 1
  • Juan Martin Montejano-Carrizales
    • 1
    Email author
  • Eugenio E. Vogel
    • 2
    • 3
  1. 1.Instituto de Física, Universidad Autonoma de San Luis PotosiS.L.P.Mexico
  2. 2.Departamento de Ciencias Físicas, Universidad de La FronteraTemucoChile
  3. 3.Center for the Development of Nanoscience and Nanotechnology (CEDENNA)SantiagoChile

Personalised recommendations