Low energy electron induced reactions in fluorinated acetamide – probing negative ions and neutral stable counterparts*

  • Janina Kopyra
  • Constanze König-Lehmann
  • Eugen Illenberger
  • Jonas Warneke
  • Petra Swiderek
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering


Electron impact to trifluoroacetamide (CF3CONH2, TFAA) in the energy range 0–12 eV leads to a variety of negative fragment ions which are formed via dissociative electron attachment (DEA). The underlying reactions range from single bond cleavages to remarkably complex reactions that lead to loss of the neutral units HF, H2O and HNCO as deduced from their directly observed ionic counterparts (M – H2O), (M – HF) and (M – HNCO). Also formed are the pseudo-halogen ions CN and OCN. All these reactions proceed dominantly via a resonance located near 1 eV, i.e., electrons at subexcitation energies trigger reactions involving multiple bond cleavages. The electron induced generation of the neutral molecules HF, H2O and HNCO in condensed TFAA films is probed by temperature controlled thermal desorption spectrometry (TDS) which can be viewed as a complementary techniques to gas-phase experiments in DEA to directly probe the neutral counterparts.

Graphical abstract


  1. 1.
    E. Illenberger, J. Momigny, in Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization, Topics in Physical Chemistry, edited by H. Baumgärtel, E.U. Franck, W. Grünbein (Steinkopff Verlag, Darmstadt, Springer-Verlag, New York, 1992), Vol. IIGoogle Scholar
  2. 2.
    G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry (VCH Verlagsgesellschaft., Weinheim, 1985)Google Scholar
  3. 3.
    C.R. Arumainayagam, H.-L. Lee, R.B. Nelson, D.R. Haines, RP. Gunawardane, Surf. Sci. Rep. 65, 1 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    E. Böhler, J. Warneke, P. Swiderek, Chem. Soc. Rev. 42, 9219 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Warneke, W.F. Van Dorp, P. Rudolf, M. Stano, P. Papp, S. Matejcik, T. Borrmann, P. Swiderek, Phys. Chem. Chem. Phys. 17, 1204 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Warneke, Z. Wang, P. Swiderek, J.H. Bredehöft, Angew. Chem. Int. Ed. 54, 4397 (2015)CrossRefGoogle Scholar
  7. 7.
    L.G. Christophorou, J.K. Olthoff, Fundamental Electron Interactions with Plasma Processing Gases (Kluwer Academic, New York, 2004)Google Scholar
  8. 8.
    W. Barszczewska, J. Kopyra, J. Wnorowska, I. Szamrej, J. Phys. Chem. A 107, 11427 (2003)CrossRefGoogle Scholar
  9. 9.
    T. Oster, A. Kühn, E. Illenberger, Int. J. Mass Spectrom. Ion Proc. 89, 1 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    R. Balog, J. Langer, S. Gohlke, M. Stano, H. Abdoul-Carime, E. Illenberger, Int. J. Mass Spectrom. 233, 267 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    H.A. Carime, S. Gohlke, E. Illenberger, Phys. Rev. Lett. 92, 168103 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    S. Ptasinska, S. Denifl, P. Scheier, E. Illenberger, T.D. Märk, Angew. Chem. Int. Ed. 44, 6941 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Ptasinska, S. Denifl, P. Scheier, T.D. Mark, J. Chem. Phys. 120, 8505 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    I. Baccarelli, F.A. Gianturco, A. Grandi, N. Sanna, R.R. Lucchese, I. Bald, J. Kopyra, E. Illenberger, J. Am. Chem. Soc. 129, 6269 (2007)CrossRefGoogle Scholar
  15. 15.
    Y.V. Vasilév, B.J. Figard, V.G. Voinov, D.F. Barofsky, M.L. Deinzer, J. Am. Chem. Soc. 128, 5506 (2006)CrossRefGoogle Scholar
  16. 16.
    J. Kopyra, Chem. Phys. Lett. 533, 87 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J. Simons, Acc. Chem. Res. 39, 772 (2006)CrossRefGoogle Scholar
  20. 20.
    J. Kopyra, Phys. Chem. Chem. Phys. 14, 8287 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Sanche, Nature 461, 358 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C. König-Lehmann, J. Kopyra, I. Dabkowska, J. Kocisek, E. Illenberger, Phys. Chem. Chem. Phys. 10, 6954 (2008)CrossRefGoogle Scholar
  23. 23.
    I. Ipolyi, W. Michaelis, P. Swiderek, Phys. Chem. Chem. Phys. 8, 180 (2007)CrossRefGoogle Scholar
  24. 24.
    E. Böhler, J.H. Bredehöft, P. Swiderek, J. Phys. Chem. C 118, 6922 (2014)CrossRefGoogle Scholar
  25. 25.
    I. Bald, J. Langer, P. Tegeder, O. Ingólfsson, Int. J. Mass Spectrom. Ion Proc. 277, 4 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    The NIST Chemistry WebBook, http://webbook.nist.gov
  27. 27.
    CRC Handbook of Chemistry and Physics, edited by D.R. Lide, 78th edn. (CRC Press, Boca Raton, 1997)Google Scholar
  28. 28.
    I. Hahndorf, L. Lehr, E. Illenberger, J. Manz, Chem. Phys. Lett. 231, 460 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    I. Hahndorf, E. Illenberger, Int. J. Mass Spectrom. 167, 87 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    H. Christen, Grundlagen der Organischen Chemie (Otto Salle Verlag, Frankfurt am Main, Verlag Sauerländer, Aarau, 1985)Google Scholar
  31. 31.
    M. Orchin, F. Kaplan, R.S. Macomber, R.M. Wilson, H. Zimmer, The Vocabulary of Organic Chemistry (John Wiley & Sons, New York, 1980)Google Scholar
  32. 32.
    H. Okabe, J. Chem. Phys. 53, 3507 (1970)ADSCrossRefGoogle Scholar
  33. 33.
    M. Heni, E. Illenberger, Int. J. Mass Spectrom. Ion Proc. 71, 199 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    E. Burean, I. Ipolyi, T. Hamann, P. Swiderek, Int. J. Mass Spectrom. 277, 215 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    T. Hamann, A. Edtbauer, F. Ferreira da Silva, S. Denifl, P. Scheier, P. Swiderek, Phys. Chem. Chem. Phys. 13, 12305 (2011)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Janina Kopyra
    • 1
  • Constanze König-Lehmann
    • 2
  • Eugen Illenberger
    • 2
  • Jonas Warneke
    • 3
  • Petra Swiderek
    • 3
  1. 1.Siedlce University, Faculty of SciencesSiedlcePoland
  2. 2.Institut für Chemie und Biochemie - Physikalische und Theoretische Chemie, Freie Universität BerlinBerlinGermany
  3. 3.Institut für Angewandte und Physikalische Chemie, Universität BremenBremenGermany

Personalised recommendations