Theoretical study of a positron-attachment to vibrational excited states for non-polar carbon disulfide molecule

  • Yu Takeda
  • Yukiumi Kita
  • Masanori Tachikawa
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering


We theoretically analyzed a positron affinity (PA), which is the binding energy of a positron, of the non-polar carbon disulfide (CS2) molecule at vibrational excited states to elucidate the effect of molecular vibrations on the binding of positron to the molecule. Using the configuration interaction method of the multi-component molecular orbital theory and anharmonic vibrational state analysis with vibrational quantum Monte Carlo technique, the vibrational averaged PA values are calculated as 0.39, 2.03, and 5.02 meV for the ground state, fundamental tone, and overtone states of asymmetric stretching mode, respectively. The PA value of CS2 molecule is found to be enhanced by the vibrational excitation of only asymmetric stretching mode compared to the value at the vibrational ground state. With the linear regression analysis, we have confirmed that such enhancement of vibrational averaged PA values mainly arises from the increment of molecular permanent dipole moment due to the vibrational excitations of the asymmetric stretching mode.

Graphical abstract


  1. 1.
    P.G. Coleman, Positron Beams and Their Applications (World Scientific, Singapore, 2000) Google Scholar
  2. 2.
    M. Charlton, J.W. Humberston, Positron Physics (Cambridge University Press, Cambridge, 2001) Google Scholar
  3. 3.
    L. Sokoloff, M. Reivich, C. Kennedy, M.H. Des Rosiers, C.S. Patlak, K.D. Pettigrew, O. Sakurada, M. Shinohara, J. Neurochem. 28, 897 (1977) CrossRefGoogle Scholar
  4. 4.
    New directions in Antimatter Chemistry and Physics, edited by C.M. Surko, F.A. Gianturco (Kluwer Academic Publishers, the Netherlands, 2001) Google Scholar
  5. 5.
    J.A. Young, C.M. Surko, Phys. Rev. A 78, 032702 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Danielson, J.A. Young, C.M. Surko, J. Phys. B 42, 235203 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    G.F. Gribakin, J.A. Young, C.M. Surko, Rev. Mod. Phys. 82, 2557 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Danielson, J.J. Gosselin, C.M. Surko, Phys. Rev. Lett. 104, 233201 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    A.C.L. Jones, J.R. Danielson, J.J. Gosselin, M.R. Natisin, C.M. Surko, New J. Phys. 14, 015006 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Danielson, A.C.L. Jones, M.R. Natisin, C.M. Surko, Phys. Rev. Lett. 109, 113201 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    O.H. Crawford, Proc. Phys. Soc. 91, 279 (1967) ADSCrossRefGoogle Scholar
  12. 12.
    O.H. Crawford, Mol. Phys. 20, 585 (1971) ADSCrossRefGoogle Scholar
  13. 13.
    K. Koyanagi, Y. Kita, M. Tacikawa, Int. J. Quantum Chem. 113, 382 (2013) CrossRefGoogle Scholar
  14. 14.
    K. Koyanagi, Y. Takeda, T. Oyamada, Y. Kita, M. Tachikawa, Phys. Chem. Chem. Phys. 15, 16208 (2014) CrossRefGoogle Scholar
  15. 15.
    Y. Kita, M. Tachikawa, Eur. Phys. J. D 68, 116 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Yamada, Y. Kita, M. Tachikawa, Phys. Rev. A 89, 062711 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    M. Tachikawa, Chem. Phys. Lett. 350, 269 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    J.K.G. Watson, Mol. Phys. 15, 479 (1977) ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Bowman, J. Chem. Phys. 68, 608 (1977) ADSCrossRefGoogle Scholar
  20. 20.
    M.J. Frisch et al., GAUSSIAN 09, Revision C. 01 (Gaussian Inc., Wallingford CT, 2010) Google Scholar
  21. 21.
    G. Brasen, W. Demtröder, J. Chem. Phys. 110, 11841 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 131, 134310 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 135, 054108 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Quantum Chemistry Division, Yokohama City UniversityYokohamaJapan

Personalised recommendations