Triple-differential cross sections for the ionization of NH3 by positron impact

Comparison with electron impact ionization
  • Istvan TóthEmail author
  • Ladislau Nagy
  • Radu I. Campeanu
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering


Triple differential cross sections are calculated for the ionization of NH3 by positron impact in coplanar and perpendicular geometrical arrangements. The cross sections are determined for symmetrically emerging particles with equal energies. The positron cross sections are compared with previously calculated electron cross sections for the same kinematical conditions.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    J.P. Marler, C.M. Surko, R.P. McEachran, A.D. Stauffer, Phys. Rev. A 73, 064702 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    H. Bluhme, H. Knudsen, J.P. Merrison, K.A. Nielsen, J. Phys. B 32, 5835 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    D.A. Cooke, D.J. Murtagh, G. Laricchia, Phys. Rev. Lett. 104, 073201 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Machacek, E.K. Anderson, C. Makochekanwa, S.J. Buckman, J.P. Sullivan, Phys. Rev. A 88, 042715 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    L. Chiari et al., J. Chem. Phys. 138, 074301 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    M. Brauner, J.S. Briggs, H. Klar, J. Phys. B 22, 2265 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Á. Kövér, G. Laricchia, Phys. Rev. Lett. 80, 5309 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    R.D. DuBois, O.G. de Lucio, J. Gavin, Braz. J. Phys. 36, 2B (2006)CrossRefGoogle Scholar
  9. 9.
    Á. Benedek, R.I. Campeanu, J. Phys. B 40, 1589 (2007)CrossRefGoogle Scholar
  10. 10.
    Á. Benedek, R.I. Campeanu, Nucl. Instrum. Methods B 266, 458 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    P. Singh, G. Purohit, C. Champion, V. Patidar, Phys. Rev. A 89, 032714 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S.J. Brawley, S. Armitage, J. Beale, D.E. Leslie, A.I. Williams, G. Laricchia, Science 330, 789 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M. Shipman et al., Phys. Rev. Lett. 115, 033401 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    I. Tóth, R.I. Campeanu, L. Nagy, Eur. Phys. J. D 66, 21 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    I. Tóth, R.I. Campeanu, L. Nagy, Eur. Phys. J. D 69, 2 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    K.L. Nixon, A.J. Murray, H. Chaluvadi, C. Ning, J. Colgan, D.H. Madison, J. Chem. Phys. 138, 174304 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S.J. Ward, J.H. Macek, Phys. Rev. A 49, 1049 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    R.I. Campeanu, V. Chiş, L. Nagy, A.D. Stauffer, Nucl. Instrum. Methods B 247, 58 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    I. Tóth, R.I. Campeanu, V. Chiş, L. Nagy, Phys. Lett. A 360, 131 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    D.H. Madison, O. Al-Hagan, J. At. Mol. Opt. Phys. 2010, 367180 (2010)Google Scholar
  21. 21.
    O. Al-Hagan, C. Kaiser, D. Madison, A.J. Murray, Nat. Phys. 5, 59 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of Phyics, Babeş-Bolyai UniversityCluj NapocaRomania
  2. 2.Department of Physics and Astronomy, York UniversityTorontoCanada

Personalised recommendations