A test of H2-He potential energy surfaces

Regular Article

Abstract

The close-coupling method is used to calculate purely rotational relaxation rates and pressure broadening and shifting coefficients for H2-He collisions, in order to test various potential energy surfaces. Downward rate coefficients k3→1(T) and k2→0(T) are compared with experimental data, but the subtle differences in the potential energy surfaces are hardly reflected in these rates. Helium pressure broadening and shifting generalized cross sections for the isotropic Raman Q(1) lines of the fundamental bands of D2 and H2 as well as the purely rotational Stokes S0(1) line of H2 are therefore also considered. While these spectroscopic characteristics are much more sensitive to the precise form of the interaction potential, a proper validation cannot be performed without taking into account the influence of the translational motion on the molecular line shapes. After including this, it is found that the potential energy surface of Bakr, Smith and Patkowski [B.W. Bakr, D.G.A. Smith, K. Patkowski, J. Chem. Phys. 139, 144305 (2013)] allows the best reproduction of the experimental data.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    F.R.W. McCourt, J.J.M. Beenakker, W.E. Köhler, I. Kuscer, Nonequilibrium Phenomena in Polyatomic Gases (Clarendon, Oxford 1991)Google Scholar
  2. 2.
    D. Flower, Molecular Collisions in the Interstellar Medium (Cambridge University Press, Cambridge, 1990)Google Scholar
  3. 3.
    J.-M. Hartmann, C. Boulet, D. Robert, Collisional Effects on Molecular Spectra(Elsevier, Amsterdam, 2008) Google Scholar
  4. 4.
    L. Frommhold, Collision-induced Absorption in Gases (Cambridge University Press, Cambridge, 1993)Google Scholar
  5. 5.
    A.I. Boothroyd, P.G. Martin, M.R. Peterson, J. Chem. Phys. 119, 3187 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    B.W. Bakr, D.G.A. Smith, K. Patkowski, J. Chem. Phys. 139, 144305 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    J. Schaefer, W.E. Köhler, Physica A 129, 469 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    P. Muchnick, A. Russek, J. Chem. Phys. 100, 4336 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    F.M. Tao, J. Chem. Phys. 100, 4947 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    J.L. Nolte, P.C. Stancil, T.-G. Lee, N. Balakrishnan, R.C. Forrey, ApJ 744, 62 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    T.-G. Lee, C. Rochow, R. Martin, T.K. Clark, R.C. Forrey, N. Balakrishnan, P.C. Stancil, D.R. Schultz, A. Dalgarno, G.J. Ferland, J. Chem. Phys. 122, 024307 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    G. Tejeda, F. Thibault, J.-M. Fernández, S. Montero, J. Chem. Phys. 128, 224308 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    F.R.W. McCourt, D. Weir, G.B. Clark, M. Thachuk, Mol. Phys. 103, 17 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    G. Garberoglio, K. Patkowski, A.H. Harvey, Int. J. Thermophys. 35, 1435 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Lellouch, B. Bezard, T. Fouchet, H. Feuchtgruber, T. Encrenaz, T. de Graauw, A&A 670, 610 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    H. Feuchtgruber et al., A&A 551, A126 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    H. Feuchtgruber, E. Lellouch, B. Bézard, Th. Encrenaz, Th. de Graauw, G.R. Davis, A&A 341, L17 (1999)ADSGoogle Scholar
  18. 18.
    E. Lellouch et al., A&A 518, L152 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    W.M. Hayden Smith, C.P. Conner, J. Simon, W.V. Schempp, W. Macy, Icarus 81, 429 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    K.H. Baines, M.E. Mickelson, L.E. Larson, D.W. Ferguson, Icarus 114, 328 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    F.M. Flasar et al., Space Sci. Rev. 115, 169 (2004)ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
    G.L. Pilbratt, J.R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A.M. Heras, C. Jewell, L. Metcalfe, S. Ott, M. Schmidt, A&A 518, L1 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    E. Miller-Ricci, S. Seager, D. Sasselov, ApJ 690, 1056 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    G. Li, A. Serdyukov, M. Gisi, O. Werhahn, V. Ebert, J. Quant. Spectrosc. Radiat. Transfer 165, 76 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    N. Jacquinet-Husson et al., J. Quant. Spectrosc. Radiat. Transfer 112, 2395 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    C. Hill, I.E. Gordon, L.S. Rothman, J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 130, 51 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski, J. Quant. Spectrosc. Radiat. Transfer 177, 15 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    P. Wcisło, I.E. Gordon, H. Tran, Y. Tan, S.-M. Hu, A. Campargue, S. Kassi, D. Romanini, C. Hill, R.V. Kochanov, L.S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 177, 75 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    P.W. Hermans, A. Van Die, H.F.P. Knaap, J.J.M. Beenakker, Physica A 122, 233 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    J. Schaefer, L. Monchick, J. Chem. Phys. 87, 171 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    J. Schaefer, L. Monchick, A&A 265, 859 (1992)ADSGoogle Scholar
  34. 34.
    L. Ulivi, Z. Lu, G.C. Tabisz, Phys. Rev. A 40, 642 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    R. Blackmore, S. Green, L. Monchick, J. Chem. Phys. 88, 4113 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    S. Green, R. Blackmore, L. Monchick, J. Chem. Phys. 91, 52 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    R. Blackmore, S. Green, L. Monchick, J. Chem. Phys. 91, 3846 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    K.C. Smyth, G.J. Rosasco, W.S. Hurst, J. Chem. Phys. 87, 1001 (1987)ADSCrossRefGoogle Scholar
  39. 39.
    R. Brezina, W.-K. Liu, S. Green, Phys. Rev. A 51, 3645 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    J.W. Forsman, J. Bonamy, D. Robert, J.-Ph. Berger, R. Saint-Loup, H. Berger, Phys. Rev. A. 52, 2652 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    P. Joubert, M.-L. Dubernet, J. Bonamy, D. Robert, J. Chem. Phys. 107, 3845 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    X. Michaut, R. Saint-Loup, H. Berger, M.-L. Dubernet, J. Bonamy, D. Robert, J. Chem. Phys. 109, 951 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    M.-L. Dubernet, P.A. Tuckey, Chem. Phys. Lett. 300, 275 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    M.-L. Dubernet, P.A. Tuckey, G. Jolicard, X. Michaut, H. Berger, J. Chem. Phys. 114, 1286 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    A.M. Arthurs, A. Dalgarno, Proc. Roy. Soc. Lond. A 256, 540 (1960)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A.D. May, W.-K. Liu, F.R.W. McCourt, R. Ciuryło, J. Sanchez-Fortun Stoker, D. Shapiro, R. Wehr, Can. J. Phys. 91, 879 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    P. Wcisło, F. Thibault, H. Cybulski, R. Ciuryło, Phys. Rev. A 91, 052505 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    H.M. Pickett, J. Chem. Phys. 73, 6090 (1980)ADSCrossRefGoogle Scholar
  49. 49.
    R.L. Farrow, L.A. Rahn, G.O. Sitz, G.J. Rosasco, Phys. Rev. Lett. 63, 746 (1989)ADSCrossRefGoogle Scholar
  50. 50.
    D. Robert, J.M. Thuet, J. Bonamy, S. Temkin, Phys. Rev. A 47, R771 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    P.N.M. Hoang, P. Joubert, D. Robert, Phys. Rev. A 65, 012507 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    R. Ciuryło, D. Lisak, J. Szudy, Phys. Rev. A 66, 032701 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    P. Wcisło, H. Tran, S. Kassi, A. Campargue, F. Thibault, R. Ciuryło, J. Chem. Phys. 141, 074301 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    J.M. Hutson, S. Green, MOLSCAT version14, Collaborative Computational Project 6 of the UK Science and Engineering Research Council (Daresbury Laboratory, UK, 1995)Google Scholar
  55. 55.
    W. Meyer, P.C. Hariharan, W. Kutzelnigg, J. Chem. Phys. 73, 1880 (1980)ADSCrossRefGoogle Scholar
  56. 56.
    K. Patkowski, Private communicationGoogle Scholar
  57. 57.
    D.W. Schwenke, J. Chem. Phys. 89, 2076 (1988)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    M.H. Alexander, D.E. Manolopoulos, J. Chem. Phys. 86, 2044 (1987)ADSCrossRefGoogle Scholar
  59. 59.
    I. Dabrowski, Can. J. Phys. 62, 1639 (1984)ADSCrossRefGoogle Scholar
  60. 60.
    B. Mate, F. Thibault, G. Tejeda, J.-M. Fernandez, S. Montero, J. Chem. Phys. 122, 064313 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    S. Montero, F. Thibault, G. Tejeda, J.-M. Fernandez, J. Chem. Phys. 125, 124301 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    N. Balakrishnan, G. Quéméner, R.C. Forrey, R.J. Hinde, P.C. Stancil, J. Chem. Phys. 134, 014301 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    A. Ben-Reuven, Phys. Rev. 141, 34 (1966)ADSCrossRefGoogle Scholar
  64. 64.
    A. Ben-Reuven, Phys. Rev. 145, 7 (1966)ADSCrossRefGoogle Scholar
  65. 65.
    R. Shafer, R.G. Gordon, J. Chem. Phys. 58, 5422 (1973)ADSCrossRefGoogle Scholar
  66. 66.
    P.R. Berman, J. Quant. Spectrosc. Radiat. Transf. 12, 1331 (1972)ADSCrossRefGoogle Scholar
  67. 67.
    J. Ward, J. Cooper, E.W. Smith, J. Quant. Spectrosc. Radiat. Transf. 14, 555 (1974)ADSCrossRefGoogle Scholar
  68. 68.
    A.S. Pine, J. Quant. Spectrosc. Radiat. Transf. 62, 397 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    R. Wehr, A. Vitcu, R. Ciuryło, F. Thibault, J.R. Drummond, A.D. May, Phys. Rev. A 66, 062502 (2002)ADSCrossRefGoogle Scholar
  70. 70.
    M.J. Lindenfeld, J. Chem. Phys. 73, 5817 (1980)ADSCrossRefGoogle Scholar
  71. 71.
    R. Blackmore, J. Chem. Phys. 87, 791 (1987)ADSCrossRefGoogle Scholar
  72. 72.
    P. Wcisło, A. Cygan, D. Lisak, R. Ciuryło, Phys. Rev. A 88, 012517 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    R. Ciuryło, D.A. Shapiro, J.R. Drummond, A.D. May, Phys. Rev. A 65, 012502 (2002)ADSCrossRefGoogle Scholar
  74. 74.
    C. Luo, R. Wehr, J.R. Drummond, A.D. May, F. Thibault, J. Boissoles, J.-M. Launay, C. Boulet, J.-P. Bouanich, J.-M. Hartmann, J. Chem. Phys. 115, 2198 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    S. Green, J. Chem. Phys. 93, 1496 (1990)ADSCrossRefGoogle Scholar
  76. 76.
    S. Green, D.W. Schwenke, W.M. Huo, J. Chem. Phys. 101, 15 (1994)ADSCrossRefGoogle Scholar
  77. 77.
    Calculated values [39] reported in S.H. Fakhr, Ph.D. thesis, University of Toronto, 1999Google Scholar
  78. 78.
    Experimental values reported in Fakhr Ph.D. thesis extrapolated from: S.H. Fakhr-Eslam, G.D. Sheldon, P.M. Sinclair, J.R. Drummond, A.D. May, J. Quant. Spectrosc. Radiat. Transfer 68, 377 (2001)ADSCrossRefGoogle Scholar
  79. 79.
    P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Franck Thibault
    • 1
  • Piotr Wcisło
    • 2
  • Roman Ciuryło
    • 2
  1. 1.Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1RennesFrance
  2. 2.Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus UniversityTorunPoland

Personalised recommendations