Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

  • Milos Lj. Ranković
  • Alexandre Giuliani
  • Aleksandar R. Milosavljević
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering

Abstract

A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

Graphical abstract

References

  1. 1.
    N.J. Mason, J. Phys.: Conf. Ser. 565, 012001 (2014)ADSGoogle Scholar
  2. 2.
    G.J. Schulz, Phys. Rev. Lett. 10, 104 (1963)ADSCrossRefGoogle Scholar
  3. 3.
    S.J. Buckman, C.W. Clark, Rev. Mod. Phys. 66, 539 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    S. Trajmar, W. McConkey, I. Kanik, in Springer Handbook of Atomic, Molecular, and Optical Physics, edited by Gordon W.F. Drake (Springer Science + Business Media, Inc, Würzburg, 2006)Google Scholar
  5. 5.
    A. Hitchcock, J. Electron Spectros. Relat. Phenomena 112, 9 (2000)CrossRefGoogle Scholar
  6. 6.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    J. Gu, J. Leszczynski, H.F. Schaefer, Chem. Rev. 112, 5603 (2012)CrossRefGoogle Scholar
  8. 8.
    J.H. Moore, C.C. Davis, M.A. Coplan, S.C. Greer, Building Scientific Apparatus (Cambridge University Press, New York, 2009)Google Scholar
  9. 9.
    M. Zubek, N. Gulley, G.C. King, F.H. Read, J. Phys. B 29, L239 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    R. Janeckova, D. Kubala, O. May, J. Fedor, M. Allan, Phys. Rev. Lett. 111, 1 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Allan, Phys. Rev. Lett. 93, 3 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Živanov, M. Allan, M. Čížek, J. Horáček, F.A.U. Thiel, H. Hotop, Phys. Rev. Lett. 89, 073201 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M. Allan, Phys. Rev. Lett. 87, 033201 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    M. Allan, Phys. Rev. Lett. 98, 1 (2007)CrossRefGoogle Scholar
  15. 15.
    M.J. Brunger, S.J. Buckman, Phys. Rep. 357, 215 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.C. Gibson, D.R. Lin, L.J. Allen, R.P. McEachran, L.A. Parcell, S.J. Buckman, J. Phys. B 31, 3949 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    T.M. Maddern, L.R. Hargreaves, J.R. Francis-Staite, M.J. Brunger, S.J. Buckman, C. Winstead, V. McKoy, Phys. Rev. Lett. 100, 1 (2008)CrossRefGoogle Scholar
  18. 18.
    T.M. Maddern, L.R. Hargreaves, M. Bolorizadeh, M.J. Brunger, S.J. Buckman, Meas. Sci. Technol. 19, 085801 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J.R. Brunton, L.R. Hargreaves, S.J. Buckman, G. García, F. Blanco, O. Zatsarinny, K. Bartschat, M.J. Brunger, Chem. Phys. Lett. 568-569, 55 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Brunton, L.R. Hargreaves, T.M. Maddern, S.J. Buckman, G. García, F. Blanco, O. Zatsarinny, K. Bartschat, D.B. Jones, G.B. da Silva, M.J. Brunger, J. Phys. B 46, 245203 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Haughey, T.A. Field, J. Langer, N.S. Shuman, T.M. Miller, J.F. Friedman, A.A. Viggiano, J. Chem. Phys. 137, 54310 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    T.A. Field, K. Graupner, S. Haughey, C.A. Mayhew, N.S. Shuman, T.M. Miller, J.F. Friedman, A.A. Viggiano, J. Phys.: Conf. Ser. 388, 052086 (2012)ADSGoogle Scholar
  23. 23.
    F. Gobet, B. Farizon, M. Farizon, M.J. Gaillard, J.P. Buchet, M. Carré, P. Scheier, T.D. Märk, Phys. Rev. Lett. 89, 183403 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    S. Denifl, F. Zappa, I. Mähr, J. Lecointre, M. Probst, T.D. Märk, P. Scheier, Phys. Rev. Lett. 97, 1 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Denifl, M. Stano, A. Stamatovic, P. Scheier, T.D. Märk, J. Chem. Phys. 124, 054320 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    I. Bald, I. Dąbkowska, E. Illenberger, Angew. Chem. - Int. Ed. 47, 8518 (2008)CrossRefGoogle Scholar
  27. 27.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    F. Gaie-Levrel, G.A. Garcia, M. Schwell, L. Nahon, Phys. Chem. Chem. Phys. 13, 7024 (2011)CrossRefGoogle Scholar
  29. 29.
    A.R. Milosavljević, A. Giuliani, C. Nicolas, J.-F. Gil, J. Lemaire, M. Réfrégiers, L. Nahon, J. Phys.: Conf. Ser. 257, 012006 (2010)ADSGoogle Scholar
  30. 30.
    S. Bari, O. Gonzalez-Magaña, G. Reitsma, J. Werner, S. Schippers, R. Hoekstra, T. Schlathölter, J. Chem. Phys. 134, 24314 (2011)CrossRefGoogle Scholar
  31. 31.
    A.R. Milosavljević, C. Nicolas, J. Lemaire, C. Dehon, R. Thissen, J.-M. Bizau, M. Réfrégiers, L. Nahon, A. Giuliani, Phys. Chem. Chem. Phys. 13, 15432 (2011)CrossRefGoogle Scholar
  32. 32.
    A.R. Milosavljević, C. Nicolas, J.F. Gil, F. Canon, M. Réfrégiers, L. Nahon, A. Giuliani, J. Synchrotron Radiat. 19, 174 (2012)CrossRefGoogle Scholar
  33. 33.
    A.R. Milosavljević, F. Canon, C. Nicolas, C. Miron, L. Nahon, A. Giuliani, J. Phys. Chem. Lett. 3, 1191 (2012)CrossRefGoogle Scholar
  34. 34.
    O. González-Magaña, G. Reitsma, M. Tiemens, L. Boschman, R. Hoekstra, T. Schlathölter, J. Phys. Chem. A 116, 10745 (2012)CrossRefGoogle Scholar
  35. 35.
    A.R. Milosavljević, A. Giuliani, C. Nicolas, in Nanoscience Nanotechnology, Vol. 5: X-ray and Neutron Techniques for Nanomaterials Characterization, edited by Prof. Dr. Challa S.S.R. Kumar (Springer-Verlag Berlin Heidelberg, 2016, in press)Google Scholar
  36. 36.
    R. Aebersold, M. Mann, Nature 422, 198 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    F. Canon, A.R. Milosavljevi, L. Nahon, A. Giuliani, Phys. Chem. Chem. Phys. 17, 25725 (2015)CrossRefGoogle Scholar
  38. 38.
    R. Zubarev, N.L. Kelleher, F.W. McLafferty, J. Am. Chem. Soc. 120, 3265 (1998)CrossRefGoogle Scholar
  39. 39.
    N.L. Kelleher, Anal. Chem. 76, 197A (2004)CrossRefGoogle Scholar
  40. 40.
    L. Ding, F.L. Brancia, Anal. Chem. 78, 1995 (2006)CrossRefGoogle Scholar
  41. 41.
    T. Baba, Y. Hashimoto, H. Hasegawa, A. Hirabayashi, I. Waki, Anal. Chem. 76, 4263 (2004)CrossRefGoogle Scholar
  42. 42.
    T. Baba, J.L. Campbell, J.C.Y. LeBlanc, J.W. Hager, B.A. Thomson, Anal. Chem. 87, 785 (2015)CrossRefGoogle Scholar
  43. 43.
    O.A. Silivra, F. Kjeldsen, I.A. Ivonin, R.A. Zubarev, J. Am. Soc. Mass Spectrom. 16, 22 (2005)CrossRefGoogle Scholar
  44. 44.
    V.G. Voinov, M.L. Deinzer, D.F. Barofsky, Anal. Chem. 81, 1238 (2009)CrossRefGoogle Scholar
  45. 45.
    M.L. Ranković, A. Giuliani, A.R. Milosavljević, Appl. Phys. Lett. 108, 064101 (2016)ADSCrossRefGoogle Scholar
  46. 46.
  47. 47.
    J.C. Nickel, K. Imre, D.F. Register, S. Trajmar, J. Phys. B 18, 125 (1985)ADSCrossRefGoogle Scholar
  48. 48.
    A.R. Milosavljević, S. Madžunkov, D. Šević, I. Čadež, B.P. Marinković, J. Phys. B 39, 609 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    A.R. Milosavljević, C. Nicolas, M.L. Ranković, F. Canon, C. Miron, A. Giuliani, J. Phys. Chem. Lett. 6, 3132 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Milos Lj. Ranković
    • 1
  • Alexandre Giuliani
    • 2
    • 3
  • Aleksandar R. Milosavljević
    • 1
    • 2
    • 4
  1. 1.Institute of Physics Belgrade, University of BelgradeBelgradeSerbia
  2. 2.SOLEIL, l’Orme des Merisiers, St AubinGif sur Yvette CedexFrance
  3. 3.INRA, UAR1008, CEPIANantesFrance
  4. 4.Radiation Laboratory, University of Notre DameNotre DameUSA

Personalised recommendations