Structure and dynamics of near-threshold leptons driven by dipolar interactions: an accurate computational study for the DNA purinic bases

Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering

Abstract

The interaction of low-energy scattering electrons/positrons with molecular targets characterized by a “supercritical” permanent dipole moment (≳2.0 D) presents special physical characteristics that affect their spatial distributions, around the nuclear network of the molecular partners, both above and below the energy thresholds. Such special states are described as either dipole scattering states (DSS) above thresholds or as dipole bound states (DBS) below thresholds. The details of their respective behaviour will be presented and discussed in this work in the case of the purinic DNA bases of adenine and guanine. The behavior of the additional electron, in particular, will be discussed in detail by providing new computational results that will be related to the findings from recent experiments on the same DNA bases, confirming the transient electron’s behaviour surmised by them.

Graphical abstract

References

  1. 1.
    E. Fermi, E. Teller, Phys. Rev. 72, 399 (1947)ADSCrossRefGoogle Scholar
  2. 2.
    A.S. Wightman, Phys. Rev. 77, 521 (1949)ADSCrossRefGoogle Scholar
  3. 3.
    M.H. Mittelman, V.P. Myerscough, Phys. Rev. 23, 545 (1966)Google Scholar
  4. 4.
    J.-M. Levy-Leblond, Phys. Rev. 153, 1 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    K. Connolly, D.J. Griffith, Am. J. Phys. 75, 524 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    W.B. Brown, R.E. Roberts, J. Chem. Phys. 46, 2006 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    O.H. Crowford, W.R. Garrett, J. Chem. Phys. 66, 4968 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    J. Simons, Acc. Chem. Res. 39, 772 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Hotop, M.-H. Ruf, M. Allan, I.I. Fabrikant, Adv. At. Mol. Phys. 49, 85 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    E. Alizadeh, L. Sanche, Chem. Rev. 112, 5578 (2012)CrossRefGoogle Scholar
  11. 11.
    N.A. Oyler, L. Adamowiz, J. Phys. Chem. 97, 11122 (1993)CrossRefGoogle Scholar
  12. 12.
    C. Desfrancois, H. Abdoul-Carima, N. Khelifa, J.P. Schermann, Phys. Rev. Lett. 73, 2436 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    J. Simons, J. Phys. Chem. A 112, 6404 (2008)CrossRefGoogle Scholar
  14. 14.
    F. Carelli, T. Grassi, F.A. Gianturco, A&A 428, 1181 (2013)Google Scholar
  15. 15.
    K. Koyanagi, Y. Kita, Y. Shigata, M. Tachikawa, ChemPhysChem 15, 16208 (2013)Google Scholar
  16. 16.
    X. Li, M.D. Sevilla, Adv. Quantum Chem. 52, 59 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    C. Desfrancois, V. Periquet, Y. Bouteiller, J.P. Schermann, J. Phys. Chem. A 102, 1274 (1998)CrossRefGoogle Scholar
  18. 18.
    A.B. Stephansen, S.B. King, Y. Yokoi, Y. Minoshima, W.-L. Li, A. Kunin, T. Takayanagi, D.M. Neumark, J. Chem. Phys. 143, 104308 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J.A. Stockdale, F.J. Davis, R.N. Compton, C.E. Klots, J. Chem. Phys. 60, 4279 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    R. Hashemi, E. Illenberger, J. Phys. Chem. 95, 6402 (1991)CrossRefGoogle Scholar
  22. 22.
    H. Haberland, C. Ludewigt, H.G. Schindler, D.R. Warsuop, J. Chem. Phys. 81, 3742 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    K.R. Lykke, R.D. Mead, W.C. Lineberger, Phys. Rev. Lett. 52, 2221 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    C. Desfrancois, H. Abdoul-Carime, C. Adjami, N. Khelifa, J.P. Schermann, Europhys. Lett. 26, 25 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    F. Lecomte, S. Carles, C. Desfrançois, M.A. Johnson, J. Chem. Phys. 113, 10973 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    L. Suess, Y. Liu, R. Parthasarathy, F.B. Dunning, J. Chem. Phys. 119, 12890 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M. Cannon, Y. Liu, L. Suess, F.B. Dunning, J. Chem. Phys. 128, 244307 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    R.A. Bachorz, W. Klopper, M. Gutowski, X. Li, K.H. Bowen, J. Chem. Phys. 129, 054309 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    M. Haranczyk, M. Gutowski, X. Li, K.H. Bowen, Proc. Natl. Acad. Sci. 104, 4804 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    A.F. Jalbout, L. Adamowicz, Adv. Quantum Chem. 52, 231 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    S.B. King, M.A. Yendell, A.B. Stephansen, D.M. Neumark, J. Chem. Phys. 141, 224310 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    M.A. Yandell, S.B. King, D.M. Neumark, J. Chem. Phys. 140, 184317 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    F.A. Gianturco, R.R. Lucchese, Rev. Phys. Chem. 15, 429 (1996)Google Scholar
  35. 35.
    E.S. Chang, U. Fano, Phys. Rev. 46, 173 (1972)CrossRefGoogle Scholar
  36. 36.
    F.A. Gianturco, R. Curik, N. Sanna, J. Phys. B 33, 2705 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    N. Sanna, F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 100, 6464 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    S. Hara, J. Phys. Soc. Jpn 22, 710 (1967)ADSCrossRefGoogle Scholar
  39. 39.
    F.A. Gianturco, Physica Scripta T 23, 141 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  41. 41.
    N.T. Padial, D.W. Norcross, Phys. Rev. A 29, 1742 (1984)ADSCrossRefGoogle Scholar
  42. 42.
    F.A. Gianturco, A. Jain, L.C. Pantano, J. Phys. B 20, 571 (1987)ADSCrossRefGoogle Scholar
  43. 43.
    F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 108, 6144 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    R.R. Lucchese, V. Mc Koy, Phys. Rev. A 28, 1382 (1983)ADSCrossRefGoogle Scholar
  45. 45.
    F. Carelli, J. Franz, F.A. Gianturco, Mol. Phys. 114, 213 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    F. Carelli, F.A. Gianturco, Eur. Phys. J. D 67, 268 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    J. Franz, F.A. Gianturco, Eur. Phys. J. D 68, 183 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    S.S. Wesolowski, M.L. Leininger, P.N. Pentchew, H.F. Schaefer, III, J. Am. Chem. Soc. 123, 4023 (2001)CrossRefGoogle Scholar
  49. 49.
    E.D. Raczinska, M. Makowski, K. Zyentara-Rytter, K. Kolczynska, T.M. Stepniewsli, M. Hallmann, J. Phys. Chem. A 117, 1371 (2013)CrossRefGoogle Scholar
  50. 50.
    A.F. Jalbout, L. Adamowicz, J. Phys. Chem. A 105, 1033 (2001)CrossRefGoogle Scholar
  51. 51.
    G.H. Roehrig, N.A. Oyler, L. Adamowicz, J. Phys. Chem. 99, 14285 (1995)CrossRefGoogle Scholar
  52. 52.
    J.H. Hendricks, S.A. Lyapustina, H.L. De Clercq, J.T. Snodgrass, K.H. Bowen, J. Chem. Phys. 104, 7788 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    V. Periquet, A. Moreau, S. Carles, J.P. Schermann, C. DesFrançois, J. Electron Spect. Relat. Phenom. 106, 141 (2000)CrossRefGoogle Scholar
  54. 54.
    F. Carelli, T. Grassi, F.A. Gianturco, A&A 549, 103 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    M. Satta, F.A. Gianturco, F. Carelli, R. Wester, ApJ 799, 288 (2015)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institut für Ionen Physik und Angewandte Physik, Universität InnsbruckInnsbruckAustria

Personalised recommendations