On the fundamental role of dynamics in quantum physics

Regular Article

Abstract

Quantum theory expresses the observable relations between physical properties in terms of probabilities that depend on the specific context described by the “state” of a system. However, the laws of physics that emerge at the macroscopic level are fully deterministic. Here, it is shown that the relation between quantum statistics and deterministic dynamics can be explained in terms of ergodic averages over complex valued probabilities, where the fundamental causality of motion is expressed by an action that appears as the phase of the complex probability multiplied with the fundamental constant ħ. Importantly, classical physics emerges as an approximation of this more fundamental theory of motion, indicating that the assumption of a classical reality described by differential geometry is merely an artefact of an extrapolation from the observation of macroscopic dynamics to a fictitious level of precision that does not exist within our actual experience of the world around us. It is therefore possible to completely replace the classical concepts of trajectories with the more fundamental concept of action phase probabilities as a universally valid description of the deterministic causality of motion that is observed in the physical world.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    M.F. Pusey, J. Barrett, T. Rudolph T, Nat. Phys. 8, 475 (2012)CrossRefGoogle Scholar
  2. 2.
    M.S. Leiffer, Quanta 3, 67 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Ringbauer, B. Duffus, C. Branciard, E.G. Cavalcanti, A.G. White, A. Fedrizzi, Nat. Phys. 11, 249 (2015)CrossRefGoogle Scholar
  4. 4.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  5. 5.
    S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967)MathSciNetGoogle Scholar
  6. 6.
    A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Y. Aharonov, L. Vaidman, J. Phys. A 24, 2315 (1991)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Hardy, Phys. Rev. Lett. 68, 2981 (1992)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Aharonov, S. Popescu, D. Rohrlich, P. Skrzypczyk, New J. Phys. 15, 113015 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Lundeen, A.M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    K. Yokota, T. Yamamoto, M. Koashi, N. Imoto, New J. Phys. 11, 033011 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M.E. Goggin, M.P. Almeida, M. Barbieri, B.P. Lanyon, J.L. O’Brien, A.G. White, G.J. Pryde, Proc. Natl. Acad. Sci. USA 108, 1256 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Suzuki, M. Iinuma, H.F. Hofmann, New J. Phys. 14, 103022 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, Y. Hasegawa, Nat. Phys. 8, 185 (2012)CrossRefGoogle Scholar
  15. 15.
    L.A. Rozema, A. Darabi, D.H. Mahler, A. Hayat, Y. Soudagar, A.M. Steinberg, Phys. Rev. Lett. 109, 100404 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M. Ringbauer, D.N. Biggerstaff, M.A. Broome, A. Fedrizzi, C. Branciard, A.G. White, Phys. Rev. Lett. 112, 020401 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M. Iinuma, Y. Suzuki, T. Nii, R. Kinoshita, H.F. Hofmann, Phys. Rev. A 93, 032104 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    H.F. Hofmann, New J. Phys. 13, 103009 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    H.F. Hofmann, New J. Phys. 14, 043031 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    H.F. Hofmann, Phys. Rev. A 89, 042115 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    H.F. Hofmann, Phys. Rev. A 91, 062123 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    N.H. McCoy, Proc. Natl. Acad. Sci. USA 18, 674 (1932)ADSCrossRefGoogle Scholar
  23. 23.
    J.G. Kirkwood, Phys. Rev. 44, 31 (1933)ADSCrossRefGoogle Scholar
  24. 24.
    P.A.M. Dirac, Rev. Mod. Phys. 17, 195 (1945)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Kino, T. Nii, H.F. Hofmann, Phys. Rev. A 92, 042113 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    J.S. Lundeen, B. Sutherland, A. Patel, C. Stewart, C. Bamber, Nature 474, 188 (2011)CrossRefGoogle Scholar
  27. 27.
    J.S. Lundeen, C. Bamber, Phys. Rev. Lett. 108, 070402 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    J.Z. Salvail, M. Agnew, A.S. Johnson, E. Bolduc, J. Leach, R.W. Boyd, Nat. Photon. 7, 316 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    C. Bamber, J.S. Lundeen, Phys. Rev. Lett. 112, 070405 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    H.F. Hofmann, New J. Phys. 16, 063056 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    H.F. Hofmann, Phys. Rev. Lett. 109, 020408 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M. Hiroishi, H.F. Hofmann, J. Phys. A 46, 245302 (2013)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    W.P. Schleich, M. Freyberger, M.S. Zubairy, Phys. Rev. A 87, 014102 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    M.J.W. Hall, D.-A. Deckert, H.M. Wiseman, Phys. Rev. X 4, 041013 (2014)Google Scholar
  35. 35.
    J.S. Briggs, Phys. Rev. A 91, 052119 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi HiroshimaJapan

Personalised recommendations