Effect of cluster environment on the electron attachment to 2-nitrophenol

  • Jaroslav Kočišek
  • Kateryna Grygoryeva
  • Jozef Lengyel
  • Michal Fárník
  • Juraj Fedor
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering

Abstract

Effect of cluster environment on the electron attachment to 2-nitrophenol (2NP) is studied in homogeneous 2NP clusters and heterogeneous clusters of 2NP, argon and water. The cluster environment significantly reduces fragmentation of 2NP after electron attachment. Parent cluster anions 2NPn- are primary reaction products in both, homogeneous and heterogeneous clusters. Non-dissociative electron attachment to homogeneous clusters proceeds at low energies <2 eV, presumably via dipole-supported states. In heterogeneous clusters, the interaction with low energy (<2 eV) electrons is shielded by the solvent. Surprisingly, the energetic threshold for the electron attachment rises with the number (n) of 2NP molecules in the cluster (2NP)n-. This rise can be either due to a strong change of the 2NP conformation induced by the cluster environment or due to the the competition with electron autodetachment after proton transfer that has been first observed by Allan in the formic acid dimer [M. Allan, Phys. Rev. Lett. 98, 123201 (2007)]. We observe the same threshold rise for complex Arm·(2NP)n- and H2O·(2NP)n- anions. This indicates that the electron attachment to 2-nitrophenol in cluster environment is more influenced by the solute − solute interaction compared to the solute − solvent interaction.

Graphical abstract

Supplementary material

References

  1. 1.
    G.G. Gomez-Tejedor, M.C. Fuss, Radiation Damage in Biomolecular Systems (Springer Netherlands, 2012)Google Scholar
  2. 2.
    Q.B. Lu, L. Sanche, Phys. Rev. Lett. 87, 078501 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A. Lafosse, M. Bertin, A. Domaracka, D. Pliszka, E. Illenberger, R. Azria, Phys. Chem. Chem. Phys. 8, 5564 (2006)CrossRefGoogle Scholar
  4. 4.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. 26, 1197 (2008)CrossRefGoogle Scholar
  5. 5.
    B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    E. Alizadeh, T.M. Orlando, L. Sanche, Ann. Rev. Phys. Chem. 66, 379 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    O. Echt, M. Knapp, C. Schwarz, E. Recknagel, in Large Finite Systems, edited by J. Jortner, A. Pullman, B. Pullman (Springer, Netherlands, 1987), p. 179Google Scholar
  9. 9.
    E. Illenberger, Chem. Rev. 92, 1589 (1992)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, X. Zhang, S. Lyapustina, M.M. Nilles, S. Xu, J.D. Graham, H.H. Bowen, J.T. Kelly, G.S. Tschumper, N.I. Hammer, Phys. Chem. Chem. Phys. 18, 704 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Gu, J. Leszczynski, F.F. Schaefer, Chem. Rev. 112, 5608 (2012)CrossRefGoogle Scholar
  12. 12.
    I. Dabkowska, J. Rak, M. Gutowski, J.M. Nilles, S.T. Stokes, K.H. Bowen, J. Chem. Phys. 120, 6064 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    I. Martin, T. Skalicky, J. Langer, H. Abdoul-Carime, G. Karwasz, E. Illenberger, M. Stano, S. Matejcik, Phys. Chem. Chem. Phys. 7, 2212 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Allan, Phys. Rev. Lett. 98, 123201 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Bachorz, M. Haranczyk, I. Dabkowska, J.R. Nad M. Gutowski, J. Chem. Phys. 122, 204304 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    H.K. Gerardi, A.F. DeBlase, C.M. Leavitt, X. Su, K.D. Jordan, M.A. McCoy, A. Johnson, J. Chem. Phys. 136, 134318 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Neustetter, J. Aysina, F.F. da Silva, S. Denifl, Angew. Chem. Int. Ed. 54, 9124 (2015)CrossRefGoogle Scholar
  18. 18.
    A.R. Allouche, J. Comput. Chem. 32, 174 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Nagaya, S. Kudoh, M. Nakata, Chem. Phys. Lett. 427, 67 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    A. Modellia, M. Venuti, Int. J. Mass Spectrom. 205, 7 (2001)CrossRefGoogle Scholar
  21. 21.
    B.W. LaFranchi, G.A. Petrucci, J. Am. Soc. Mass Spectrom. 15, 424 (2004)CrossRefGoogle Scholar
  22. 22.
    V. Poterya, J. Kočišek, A. Pysanenko, M. Fárník, Phys. Chem. Chem. Phys. 16, 421 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Lengyel, J. Kočišek, V. Poterya, A. Pysanenko, P. Svrčková, M. Fárník, D. Zaouris, J. Fedor, J. Chem. Phys. 137, 034304 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J. Lengyel, A. Pysanenko, V. Poterya, J. Kočišek, M. Fárník, Chem. Phys. Lett. 612, 256 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    J. Kočišek, J. Lengyel, M. Fárník, J. Chem. Phys. 138, 124306 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M.V. Muftakhov, R.V. Khatymov, P.V. Shchukin, A.V. Pogulay, V.A. Mazunov, J. Mass Spectrom. 45, 82 (2010)Google Scholar
  27. 27.
    R. Janečková, O. May, A. Milosavljević, J. Fedor, Int. J. Mass Spectrom. 365-366, 163 (2010)CrossRefGoogle Scholar
  28. 28.
    C. Koenig-Lehmann, J. Kopyra, I. Dabkowska, J. Kocisek, E. Illenberger, Phys. Chem. Chem. Phys. 10, 6954 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Smyth, J. Kohanoff, I.I. Fabrikant, J. Chem. Phys. 140, 184313 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    C. Desfrancois, V. Periquet, S.A. Lyapustina, T.P. Lippa, R.D. W., H. Bowen, K.H. Nonaka, R.N. Compton, J. Chem. Phys. 111, 4569 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    O. Inglfsson, F. Weik, E. Illenberger, Int. J. Mass Spectrom. Ion Processes 155, 1 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    J. Kočišek, J. Lengyel, M. Fárník, P. Slavíček, J. Chem. Phys. 139, 214308 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    F. Ferreira da Silva, S. Denifl, T. Mark, A.M. Ellis, P. Scheier, J. Chem. Phys. 132, 214306 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    W.C. Simpson, T.M. Orlando, L. Parenteau, K. Nagesha, L. Sanche, J. Phys. Chem. 108, 5027 (1998)CrossRefGoogle Scholar
  35. 35.
    V. Periquet, A. Moreau, S. Carles, J. Schermann, C. Desfrançois, J. Electron Spectrosc. Relat. Phenomena 106, 141 (2000)CrossRefGoogle Scholar
  36. 36.
    H.A. Ernst, T.J.A. Wolf, O. Schalk, N. Gonzlez-Garca, A.E. Boguslavskiy, A. Stolow, M. Olzmann, A.N. Unterreiner, J. Phys. Chem. A 119, 9225 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  • Jaroslav Kočišek
    • 1
  • Kateryna Grygoryeva
    • 1
    • 2
  • Jozef Lengyel
    • 1
  • Michal Fárník
    • 1
  • Juraj Fedor
    • 1
  1. 1.J. Heyrovský Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Department of Physical Chemistry, University of Chemistry and Technology PragueTechnická 5Prague 6Czech Republic

Personalised recommendations