Advertisement

A comparative study of porphyrin dye sensitizers YD2-o-C8, SM315 and SM371 for solar cells: the electronic structures and excitation-related properties

  • Xing-Yu Li
  • Cai-Rong ZhangEmail author
  • Li-Hua Yuan
  • Mei-Ling Zhang
  • Yu-Hong Chen
  • Zi-Jiang Liu
Regular Article

Abstract

Understanding the electronic structures and excitation properties of dye sensitizers has significant importance to improve the photon-energy conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Here, based upon the results calculated using density functional theory, the electronic structures and excitation related properties of porphyrin dye sensitizers YD2-o-C8, SM315, and SM371 were analyzed. It was found that the similar electronic structures of YD2-o-C8 and SM371 result in similar absorption spectra, excitation, and free energy variation for electron injection (EI) and dye regeneration. However, since the electronic structure of the benzothiadiazole unit is well-coupled to that of the porphyrin ring, introducing benzothiadiazole into porphyrin dyes generates a decrease in the lowest unoccupied molecular orbital energy, red-shift and splitting of absorption bands. Meanwhile, remarkably it increases the transferred charges of excitation, which is responsible for the superior short-circuit current density of SM315 sensitized DSSCs. Furthermore, the transition configurations and molecular orbitals indicate the diarylamine group acts as an electronic donor, and the different EI modes with different timescales coexist in excited states due to the multi-configurations of transition. The results of structure-property relationships are favorable to develop novel dye sensitizers for DSSCs.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

Supplementary material

References

  1. 1.
    B. O’Regan, M. Gratzel, Nature 353, 737 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  3. 3.
    A.W. Hains, Z. Liang, M.A. Woodhouse, B.A. Gregg, Chem. Rev. 110, 6689 (2010)CrossRefGoogle Scholar
  4. 4.
    J.N. Clifford, E. Martinez-Ferrero, A. Viterisi, E. Palomares, Chem. Soc. Rev. 40, 1635 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Gratzel, Acc. Chem. Res. 42, 1788 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Mishra, M.K.R. Fischer, P. Bauerle, Angew. Chem. Int. Ed. 48, 2474 (2009)CrossRefGoogle Scholar
  7. 7.
    Z.J. Ning, H. Tian, Chem. Commun. 5483 (2009)Google Scholar
  8. 8.
    N. Robertson, Angew. Chem. Int. Ed. 45, 2338 (2006)CrossRefGoogle Scholar
  9. 9.
    S.M. Zakeeruddin, M. Gratzel, Adv. Funct. Mater. 19, 2187 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Gratzel, Nature 414, 338 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswyk, J.T. Hupp, Energ. Environ. Sci. 1, 66 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Preat, D. Jacquemin, E.A. Perpète, Energy Environ. Sci. 3, 891 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Cabau, C. Vijay Kumar, A. Moncho, J.N. Clifford, N. López, E. Palomares, Energ. Environ. Sci. 8, 1368 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Péchy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123, 1613 (2001)CrossRefGoogle Scholar
  15. 15.
    M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc. 127, 16835 (2005)CrossRefGoogle Scholar
  16. 16.
    F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Gratzel, Chem. Commun. 2635 (2008)Google Scholar
  17. 17.
    J.W. Chen, Y. Cao, Acc. Chem. Res. 42, 1709 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res. 42, 1809 (2009)CrossRefGoogle Scholar
  19. 19.
    P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Chem. Rev. 110, 6664 (2010)CrossRefGoogle Scholar
  20. 20.
    K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno, M. Hanaya, Chem. Commun. 50, 6379 (2014)CrossRefGoogle Scholar
  21. 21.
    Z. Yao, M. Zhang, R. Li, L. Yang, Y. Qiao, P. Wang, Angew. Chem. Int. Ed. 54, 5994 (2015)CrossRefGoogle Scholar
  22. 22.
    A.L.A. Parussulo, B.A. Iglesias, H.E. Toma, K. Araki, Chem. Commun. 48, 6939 (2012)CrossRefGoogle Scholar
  23. 23.
    C.-H. Wu, T.-Y. Pan, S.-H. Hong, C.-L. Wang, H.-H. Kuo, Y.-Y. Chu, E.W.-G. Diau, C.-Y. Lin, Chem. Commun. 48, 4329 (2012)CrossRefGoogle Scholar
  24. 24.
    T. Higashino, H. Imahori, Dalton Trans. 44, 448 (2015)CrossRefGoogle Scholar
  25. 25.
    L.-L. Li, E.W.-G. Diau, Chem. Soc. Rev. 42, 291 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Bessho, S.M. Zakeeruddin, C.Y. Yeh, E.W. Diau, M. Gratzel, Angew. Chem. Int. Ed. 49, 6646 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Ishida, S.W. Park, D. Hwang, Y.B. Koo, J.L. Sessler, D.Y. Kim, D. Kim, J. Phys. Chem. C 115, 19343 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Yella, H.W. Lee, H.N. Tsao, C.Y. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel, Science 334, 629 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    C.Y. Chen, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, J.D. Decoppet, J.H. Tsai, C. Gratzel, C.G. Wu, S.M. Zakeeruddin, M. Gratzel, ACS Nano 3, 3103 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Nat. Chem. 6, 242 (2014)CrossRefGoogle Scholar
  31. 31.
    C.-K. Tai, Y.-J. Chen, H.-W. Chang, P.-L. Yeh, B.-C. Wang, Comput. Theory Chem. 971, 42 (2011)CrossRefGoogle Scholar
  32. 32.
    C.K. Dong, X. Li, W. Zhao, P.F. Jin, X.J. Fan, J.Y. Qi, Chem. Eur. J. 19, 10046 (2013)CrossRefGoogle Scholar
  33. 33.
    M.G. Ju, W.Z. Liang, J. Phys. Chem. C 117, 14899 (2013)CrossRefGoogle Scholar
  34. 34.
    M.P. Balanay, D.H. Kim, Phys. Chem. Chem. Phys. 10, 5121 (2008)CrossRefGoogle Scholar
  35. 35.
    B.-G. Kim, C.-G. Zhen, E.J. Jeong, J. Kieffer, J. Kim, Adv. Funct. Mater. 22, 1606 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Dong, X. Zhou, C.J. Jiang, Theor. Chem. Acc. 131, 1102 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Karthikeyan, J.Y. Lee, J. Phys. Chem. A 117, 10973 (2013)CrossRefGoogle Scholar
  38. 38.
    M.J. Zhang, Y.R. Guo, G.Z. Fang, Q.J. Pan, Comput. Theory Chem. 1019, 94 (2013)CrossRefGoogle Scholar
  39. 39.
    Y. Wei, T. Zhang, Z. Lang, L. Yan, Z. Su, Dyes, Pigments 102, 6 (2014)CrossRefGoogle Scholar
  40. 40.
    W.-L. Ding, D.-M. Wang, Z.-Y. Geng, X.-L. Zhao, W.-B. Xu, Dyes Pigments 98, 125 (2013)CrossRefGoogle Scholar
  41. 41.
    X. Gu, Q. Sun, Phys. Chem. Chem. Phys. 15, 15434 (2013)CrossRefGoogle Scholar
  42. 42.
    M. Guo, M. Li, Y. Dai, W. Shen, J. Peng, C. Zhu, S.H. Lin, R. He, RSC Adv. 3, 17515 (2013)CrossRefGoogle Scholar
  43. 43.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Lzmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Lyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford CT, 2010)Google Scholar
  44. 44.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    D. Jacquemin, E.A. Perpète, I. Ciofini, C. Adamo, Acc. Chem. Res. 42, 326 (2008)CrossRefGoogle Scholar
  46. 46.
    M. Pastore, E. Mosconi, F. De Angelis, M. Grätzel, J. Phys. Chem. C 114, 7205 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Liu, Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen, L. Han, Energ. Environ. Sci. 7, 2963 (2014)CrossRefGoogle Scholar
  48. 48.
    L.-H. Han, C.-R. Zhang, J.-W. Zhe, N.-Z. Jin, Y.-L. Shen, W. Wang, J.-J. Gong, Y.-H. Chen, Z.-J. Liu, Int. J. Mol. Sci. 14, 20171 (2013)CrossRefGoogle Scholar
  49. 49.
    C.-R. Zhang, L. Liu, Z.-J. Liu, Y.-L. Shen, Y.-T. Sun, Y.-Z. Wu, Y.-H. Chen, L.-H. Yuan, W. Wang, H.-S. Chen, J. Mol. Graph. Modell. 38, 419 (2012)CrossRefGoogle Scholar
  50. 50.
    T. Lu, F. Chen, Acta Chim. Sin. 69, 2393 (2011)Google Scholar
  51. 51.
    B.P. Rand, D. Cheyns, K. Vasseur, N.C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J.-L. Brédas, J. Genoe, Adv. Funct. Mater. 22, 2987 (2012)CrossRefGoogle Scholar
  52. 52.
    V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995 (1998)CrossRefGoogle Scholar
  53. 53.
    T.M. Henderson, A.F. Izmaylov, G. Scalmani, G.E. Scuseria, J. Chem. Phys. 131, 044108 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    J. Heyd, G.E. Scuseria, J. Chem. Phys. 120, 7274 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    A.F. Izmaylov, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 125, 104103 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    S.I. Gorelsky, A.B.P. Lever, J. Organometall. Chem. 635, 187 (2001)CrossRefGoogle Scholar
  58. 58.
    H.-P. Lu, C.-Y. Tsai, W.-N. Yen, C.-P. Hsieh, C.-W. Lee, C.-Y. Yeh, E.W.-G. Diau, J. Phys. Chem. C 113, 20990 (2009)CrossRefGoogle Scholar
  59. 59.
    J. Preat, C. Michaux, D. Jacquemin, E.A. Perpète, J. Phys. Chem. C 113, 16821 (2009)CrossRefGoogle Scholar
  60. 60.
    J.B. Asbury, Y.-Q. Wang, E. Hao, H.N. Ghosh, T. Lian, Res. Chem. Intermed. 27, 393 (2001)CrossRefGoogle Scholar
  61. 61.
    R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 108, 4818 (2004)CrossRefGoogle Scholar
  62. 62.
    G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 42, 1819 (2009)CrossRefGoogle Scholar
  63. 63.
    T. Le Bahers, C. Adamo, I. Ciofini, J. Chem. Theory Comput. 7, 2498 (2011)CrossRefGoogle Scholar
  64. 64.
    S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, J. Am. Chem. Soc. 132, 16714 (2010)CrossRefGoogle Scholar
  65. 65.
    C.-R. Zhang, L. Liu, J.-W. Zhe, N.-Z. Jin, Y. Ma, L.-H. Yuan, M.-L. Zhang, Y.-Z. Wu, Z.-J. Liu, H.-S. Chen, Int. J. Mol. Sci. 14, 5461 (2013)CrossRefGoogle Scholar
  66. 66.
    Y. Zhang, L. Chen, X. Hu, L. Zhang, Y. Chen, Sci. Rep. 5, 12839 (2015)ADSCrossRefGoogle Scholar
  67. 67.
    C.-R. Zhang, L. Liu, J.-W. Zhe, N.-Z. Jin, L.-H. Yuan, Y.-H. Chen, Z.-Q. Wei, Y.-Z. Wu, Z.-J. Liu, H.-S. Chen, J. Mol. Model. 19, 1553 (2013)CrossRefGoogle Scholar
  68. 68.
    C.-R. Zhang, L.-H. Han, J.-W. Zhe, N.-Z. Jin, D.-B. Wang, X. Wang, Y.-Z. Wu, Y.-H. Chen, Z.-J. Liu, H.-S. Chen, Comput. Theory Chem. 1017, 99 (2013)CrossRefGoogle Scholar
  69. 69.
    C.-R. Zhang, Z.-J. Liu, Y.-T. Sun, Y.-L. Shen, Y.-H. Chen, Y.-J. Liu, W. Wang, H.-M. Zhang, Spectrochim. Acta Part A 79, 1843 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res. 42, 1809 (2009)CrossRefGoogle Scholar
  71. 71.
    B. Albinsson, J. Martensson, J. Photochem. Photobiol. C 9, 138 (2008)CrossRefGoogle Scholar
  72. 72.
    P. Piatkowski, C. Martin, M.R. di Nunzio, B. Cohen, S. Pandey, S. Hayse, A. Douhal, J. Phys. Chem. C 118, 29674 (2014)CrossRefGoogle Scholar
  73. 73.
    R.A. Marcus, Rev. Mod. Phys. 65, 599 (1993)ADSCrossRefGoogle Scholar
  74. 74.
    Y. Liu, H. Lin, J. Li, J.T. Dy, K. Tamaki, J. Nakazaki, D. Nakayama, C. Nishiyama, S. Uchida, T. Kubo, H. Segawa, Phys. Chem. Chem. Phys. 14, 16703 (2012)CrossRefGoogle Scholar
  75. 75.
    K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 177, 347 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xing-Yu Li
    • 1
    • 2
  • Cai-Rong Zhang
    • 1
    • 2
    Email author
  • Li-Hua Yuan
    • 2
  • Mei-Ling Zhang
    • 2
  • Yu-Hong Chen
    • 1
    • 2
  • Zi-Jiang Liu
    • 3
  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of TechnologyGansuP.R. China
  2. 2.Department of Applied Physics, Lanzhou University of TechnologyGansuP.R. China
  3. 3.Department of PhysicsLanzhou City UniversityLanzhouP.R. China

Personalised recommendations