Advertisement

Terahertz twisted beams generation in plasma

  • Hassan Sobhani
  • Mohammad Vaziri (Khamedi)Email author
  • Hossien Rooholamininejad
  • Alireza Bahrampour
Regular Article

Abstract

The resonant vortex terahertz beam generation by the cross-focusing of two twisted coaxial laser beams is investigated. For the resonant excitation of terahertz radiation, the rippled density in plasma and the ripple wave number is suitably chosen to satisfy the phase matching condition. The nonlinear current density at terahertz frequency arises due to the spatial variation of two Laguerre-Gaussian coupled field. The terahertz intensity scales as the ponderomotive force of laser beams which imparts an oscillatory velocity to the electrons and, in fact, input Laguerre-Gaussian laser beams properties such as vortex charge number and beam waist. Various laser and plasma parameters are employed to yield vortex terahertz radiation with higher efficiency. Also, it is shown that when the beating frequency approaches plasma frequency, the amplitude of THz radiation increases.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, Nano Lett. 12, 3645 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Science 340, 1545 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J. Wang, J.Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Nat. Photonics 6, 488 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Grier, Nature 424, 810 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, K. Dholakia, Science 292, 912 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    M.R. Dennis, R.P. King, B. Jack, K. O’Holleran, M.J. Padgett, Nat. Phys. 6, 118 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Watabe, G. Juman, K. Miyamoto, T. Omatsu, Sci. Rep. 4, 4281 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, R. Morita, Opt. Express 18, 17967 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Savel’ev, V. Yampol’skii, A. Rakhmanov, F. Nori, Reports on Progress in Physics 73, 026501 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S. Savel’ev, V. Yampol’skii, A. Rakhmanov, F. Nori, Phys. Rev. B 72, 144515 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    J. Orenstein, A.J. Millis, Science 288, 468 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Y.S. Lee, Principles of terahertz science and technology (Springer Science & Business Media, 2009), Vol. 170Google Scholar
  13. 13.
    B. Ferguson, X.C. Zhang, Nat. Mater. 1, 2633 (2002)CrossRefGoogle Scholar
  14. 14.
    H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Nat. Photonics 2, 295 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Zhang, Y.S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Phys. Rev. Lett. 102, 023901 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A.R. Sanchez, X.C. Zhang, IEEE J. Sel. Top. Quantum Electron. 14, 260269 (2008)Google Scholar
  17. 17.
    J. Hebling, J.A. Fulop, M.I. Mechler, L. Palfalvi, C. Toke, G. Almasi, arXiv:1109.6852
  18. 18.
    D. Sanvitto et al., Nat. Phys. 6, 527 (2010)CrossRefGoogle Scholar
  19. 19.
    N.B. Simpson, D. McGloin, K. Dholakia, L. Allen, M.J. Padgett, J. Mod. Opt. 45, 1943 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    K. Humphreys, J.P. Loughran, M. Gradziel, W. Lanigan, T. Ward, J.A. Murphy, C. O’sullivan, IEMBS’04. 26th Annual International Conference of the IEEE 1, 1302 (2004)Google Scholar
  21. 21.
    E. Pickwell, V.P. Wallace, J. Phys. D 39, R301 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    R. Fickler, R. Lapkiewicz, W.N. Plick, M. Krenn, C. Schaeff, S. Ramelow, A. Zeilinger, Science 338, 640 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    D. Hu, X.K. Wang, S.F. Feng, J.S. Ye, W.F. Sun, Q. Kan, P.J. Klar, Y. Zhang, Adv. Opt. Mater. 1, 186191 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Yu. Bliokh, Y.P. Bliokh, S. Savel’ev, F. Nori, Phys. Rev. Lett. 99, 190404 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    K. Yu. Bliokh, M.R. Dennis, F. Nori, Phys. Rev. Lett. 107, 174802 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    K.Y. Bliokh, F. Nori, Phys. Rev. A 86, 033824 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, Y. Zhang, Nature 21, 20230 (2013)Google Scholar
  28. 28.
    Ryo Imai et al., Opt. Lett. 39, 3714 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    A.S. Akhmanov, A.P. Sukhorov, R.V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968)ADSCrossRefGoogle Scholar
  30. 30.
    P. Sprangle, A. Ting, C.M. Tang, Phys. Rev. A 36, 2773 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    M. Khamedi, A.R. Bahrampour, Phys. Scr. 88, 035503 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    S. Savel’ev, A. Rakhmanov, V. Yampol’skii, F. Nori, Nature Phys. 2, 521 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    K.Y. Bliokh, P. Schattschneider, J. Verbeeck, F. Nori, Phys. Rev. X 2, 041011 (2012)Google Scholar
  34. 34.
    G. Guzzinati, P. Schattschneider, K.Y. Bliokh, F. Nori, J. Verbeeck, Phys. Rev. Lett. 110, 093601 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    P. Schattschneider, Th. Schachinger, M. Stöger-Pollach, S. Löffler, A. Steiger-Thirsfeld, K.Y. Bliokh, F. Nori, Nature Commun. 5, 4586 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    S. Misra, S.K. Mishra, P. Brijesh, Laser Part. Beams 33, 123 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    C.-H. Pai et al., Phys. Plasmas 12, 070707 (2015)CrossRefGoogle Scholar
  38. 38.
    H.K. Malik, Europhys. Lett. 106, 55002 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    A.K. Malik, H.K. Malik, Y. Nishida, Phys. Lett. A 375, 1191 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    H.K. Malik, Phys. Lett. A 379, 2826 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    D. Singh, H.K. Malik, Plasma Sources Sci. Technol. 24, 045001 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    A.K. Malik, H.K. Malik, IEEE J. Quantum Electr. 49, 232 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    H.K. Malik, A.K. Malik, Europhys. Lett. 100, 45001 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    A.K. Malik, H.K. Malik, U. Stroth, Appl. Phys. Lett. 99, 071107 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    S. Sen, M.A. Varshney, D. Varshney, Adv. Opt. Technol. 2014, 7 (2014)CrossRefGoogle Scholar
  46. 46.
    Pallavi Jha et al., Phys. Plasmas 15, 033101 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    S. Kaur, A.K. Sharma, H.A. Salih, Phys. Plasmas 16, 042509 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    H.K. Malik, A.K. Malik, Appl. Phys. Lett. 99, 251101 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    A.K. Malik, H.K. Malik, U. Stroth, Phys. Rev. E 85, 016401 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    C.S. Liu, V.K. Tripathi, J. Appl. Phys. 107, 113105 (2010)CrossRefGoogle Scholar
  51. 51.
    T.M. Antonsen Jr., J. Palastro, H.M. Milchberg, Phys. Plasmas 14, 033107 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    M. Singh, R.P. Sharma, Europhys. Lett. 101, 25001 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    M. Khamedi, A.R. Bahrampour, Europhys. Lett. 104, 25001 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hassan Sobhani
    • 1
  • Mohammad Vaziri (Khamedi)
    • 2
    Email author
  • Hossien Rooholamininejad
    • 1
  • Alireza Bahrampour
    • 3
  1. 1.Faculty of Physics, Shahid Bahonar University of KermanKermanIran
  2. 2.Department of PhysicsKerman Branch, Islamic Azad UniversityKermanIran
  3. 3.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations