Advertisement

Rayleigh scattering of X-ray and γ-ray by 2p electrons in ions and neutral atoms

  • Adrian Costescu
  • Maria Luiza Mitu
  • Sever SpânulescuEmail author
Regular Article
  • 36 Downloads

Abstract

Analytical formulae for the nonrelativistic 2p subshell Rayleigh scattering amplitudes and cross section are obtained using the second order S-matrix element and the Coulombian Green function method, including multipoles and retardation. Relativistic kinematics effects are taking into account, allowing to remove the spurious poles that occur in a usual nonrelativistic calculation with retardation included. The nonrelativistic limit is obtained by removing the relativistic higher order terms in ω/m. A simple formula is also obtained for the total photoeffect cross section for a 2p electron. In the realistic case of ionized and neutral atoms, the screening effects were included by using an effective charge Z eff approach. A good agreement within 10% is found when comparing the predictions given by our analytical results for total photoionization cross section with the full relativistic numerical calculations in the case of 2p subshell for neutral atoms with 26 ≤ Z ≤ 92 and photon energies up to 100 keV.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    S. Pašič, K. Ilakovac, Phys. Rev. A 61, 032722 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    M. Meyer, D. Cubaynes, D. Glijer, J. Dardis, H.P. Hayden, V. Richardson, E.T. Kennedy, J.T. Costello, P. Radcliffe, S. Düsterer, A. Azima, W.B. Li, H. Redlin, J. Feldhaus, R. Taïeb, A. Maquet, A.N. Grum-Grzhimailo, E.V. Gryzlova, S.I. Strakhova, Phys. Rev. Lett. 101, 193002 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    C. Bostedt, H.N. Chapman, J.T. Costello, J.R. Crespo Lopez-Urrutia, S. Düesterer, S.W. Epp, J. Feldhaus, A. Foehlisch, M. Meyer, T. Müller, R. Moshammer, M. Richter, K. Sokolowski-Tinten, A. Sorokin, K. Tiedtke, J. Ullrich, W. Wurth, Nucl. Instum. Meth. Res. A 601, 108-122 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Ding, A. Brachmann, F.-J. Decker, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, A. Miahnahri, H.-D. Nuhn, D. Ratner, J. Turner, J. Welch, W. White, J. Wu, Phys. Rev. Lett. 102, 254801 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    N. Berrah, J. Bozek, J.T. Costello, S. Düesterer, L. Fang, J. Feldhaus, H. Fukuzawa, M. Hoener, Y.H. Jiang, P. Johnsson, E.T. Kennedy, M. Meyer, R. Moshammer, P. Radcliffe, M. Richter, A. Rouzée, A. Rudenko, A. Sorokin, K. Tiedtke, K. Ueda, J. Ullrich, M.J.J. Vrakking, J. Mod. Opt. 57, 1015 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Meyer, J.T. Costello, S. Düsterer, W.B. Li, P. Radcliffe, J. Phys. B 43, 194005 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Jinhua Dai, Haixiao Deng, Zhimin Dai, Phys. Rev. Lett. 108, 034802 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    P.M. Bergstrom Jr., T. Surič, K. Pisk, R.H. Pratt, Phys. Rev. A 61, 1134 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    L.A. LaJohn, Phys. Rev. A 81, 043404 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A.N. Hopersky, A.M. Nadolinsky, Phys. Rev. A 77, 022712 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    A.N. Hopersky, A.M. Nadolinsky, S.A. Novikov, Phys. Rev. A 82, 042710 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A. Hopersky, A. Kasprzhitsky, A. Nadolinsky, O. Khoroshavina, V. Yavna, J. Phys. B 44, 045602 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Costescu, S. Spânulescu, C. Stoica, J. Phys. B 40, 2995 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A. Costescu, K. Karim, M. Moldovan, S. Spânulescu, C. Stoica, J. Phys. B 44, 45204 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Costescu, S. Spânulescu, Phys. Rev. A 73, 022702 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    L. Hostler, J. Math. Phys. 5, 591 (1964)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Bethe, E. Saltpeter, Quantum Mechanics of One- and Two-Electron Systems (Academic Press Inc, New York, 1957)Google Scholar
  18. 18.
    A.I. Akhieser, V.B. Berestetskii, Quantum Electrodynamics, 2nd edn. (Interscience-Wiley, New York, 1957)Google Scholar
  19. 19.
    J. Schwinger, J. Math. Phys. 5, 1606 (1964)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Costescu, Rev. Roum. Phys. 21, 3 (1976)Google Scholar
  21. 21.
    E. Clementi, J. Chem. Phys. 38, 2686 (1963)ADSCrossRefGoogle Scholar
  22. 22.
    E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967)ADSCrossRefGoogle Scholar
  23. 23.
    J.H. Scofield, Lawrence Radiation Laboratory Report No. CRL 51326, Livermore CA, 1973 (unpublished)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Adrian Costescu
    • 1
  • Maria Luiza Mitu
    • 1
    • 2
  • Sever Spânulescu
    • 3
    Email author
  1. 1.Department of PhysicsUniversity of BucharestBucharest-MǎgureleRomania
  2. 2.NationalInstituteforLasersBucharest-MǎgureleRomania
  3. 3.Department of PhysicsHyperion University of BucharestBucharestRomania

Personalised recommendations