Low-energy outer-shell photodetachment of the negative ion of boron

  • Kedong Wang
  • Oleg Zatsarinny
  • Klaus BartschatEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering


The photodetachment of the negative ion of boron, B(2s 22p 2)3P, is investigated by employing the B-spline R-matrixmethod for photon energies ranging from threshold to 12 eV. A multi-configuration Hartree-Fock method with nonorthogonal, term-dependent orbitals is employed to generate accurate initial bound-state and final continuum-state wavefunctions. The close-coupling expansion includes all principal scattering channels for photodetachment from both the 2p and 2s orbitals. The calculated photodetachment cross sections are in good agreement with the available experimental data. Several prominent resonance features are predicted, thereby providing new challenges in the study of this highly correlated process. To classify the resonance structure, both the partial cross sections and the main contributions of the individual scattering channels are discussed. The presented cross sections, along with the asymmetry parameter β for the angular distribution, are believed to be the most comprehensive and accurate dataset currently available for the B photodetachment process at low energies.

Graphical abstract


  1. 1.
    H. Massey Negative Ions (Cambridge University Press, Cambridge, 1976)Google Scholar
  2. 2.
    T. Andersen, Phys. Rep. 394, 157 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Liu, D.J. Pegg, J.S. Thompson, J. Dellwo, G.D. Alton, J. Phys. B 24, L1 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    D.H. Lee, C.Y. Yang, J.S. Thompson, W.D. Brandon, U. Ljungblad, D. Hanstorp, D.J. Pegg, J. Dellwo, G.D. Alton, Phys. Rev. A 51, 4284 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    P. Kristensen, H.H. Andersen, P. Balling, L.D. Steele, T. Andersen, Phys. Rev. A 52, 2847 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    V.K. Ivanov, T. Andersen, A.N. Ipatov, in: Europhysics Conference Abstracts, edited by R. Vilaseca (European Physical Society, Geneve, 1994), Vol. 18DGoogle Scholar
  7. 7.
    C.A. Ramsbottom, K.L. Bell, J. Phys. B 28, 4501 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    G. Yu. Kashenock, V.K. Ivanov, J. Phys. B 30, 4235 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    J. Liu, Y. Li, J. Wu, J. Yuan, Phys. Rev. A 87, 065402 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    O. Zatsarinny, Comp. Phys. Commun. 174 (2006) 273ADSCrossRefGoogle Scholar
  11. 11.
    O. Zatsarinny, C. Froese Fischer, Comput. Phys. Commun. 180, 2041 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    C. Froese Fischer, Comp. Phys. Commun. 176, 559 (2007)ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: An R-Matrix Approach (Institute of Physics Publishing, Bristol, 1993)Google Scholar
  15. 15.
    T.W. Gorczyca, N.R. Badnell, J. Phys. B 30, 3897 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    T. Andersen, H.K. Haugen, H. Hotop, J. Phys. Chem. Ref. Data 28, 1511 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Crees, Comput. Phys. Commun. 19, 103 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    K. Bartschat, P.G. Burke, Comput. Phys. Commun. 41, 75 (1986)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyDrake UniversityDes MoinesUSA

Personalised recommendations