Wave-packet analysis of strong-field ionization of sodium in the quasistatic regime*

  • Andrej Bunjac
  • Duška B. Popović
  • Nenad S. Simonović
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering

Abstract

Strong field ionization of the sodium atom in the tunnelling and over-the-barrier regimes is studied by examining the valence electron wave-packet dynamics in the static electric field. The lowest state energy and the ionization rate determined by this method for different strengths of the applied field agree well with the results obtained using other methods. The initial period of the nonstationary decay after switching the field on is analyzed and discussed. It is demonstrated that, if the Keldysh parameter is significantly lower than one (quasistatic regime), the probability of ionization by a laser pulse can be obtained from the static rates.

Graphical abstract

References

  1. 1.
    P. Agostini, L.F. DiMauro, Adv. At. Mol. Opt. Phys. 61, 117 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    L.V. Keldysh, Sov. Phys. J. Exp. Theor. Phys. 20, 1307 (1965)MathSciNetGoogle Scholar
  3. 3.
    M. Protopapas, C.H. Keitel, P.L. Knight, Rep. Prog. Phys. 60, 389 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. J. Exp. Theor. Phys. 64, 1191 (1986)Google Scholar
  5. 5.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1991), p. 296Google Scholar
  6. 6.
    S. Augst, D.D. Meyerhofer, D. Strickland, S.L. Chin, J. Opt. Soc. Am. B 8, 858 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    W. Xiong, S.L. Chin, Sov. Phys. J. Exp. Theor. Phys. 72, 268 (1991)Google Scholar
  8. 8.
    A. Scrinzi, M. Geissler, T. Brabec, Phys. Rev. Lett. 83, 706 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    J.S. Parker, G.S.J. Armstrong, M. Boca, K.T. Taylor, J. Phys. B 42, 134011 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M.Z. Milošević, N.S. Simonović, Phys. Rev. A 91, 023424 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J.E. Sansonetti, W.C. Martin, J. Phys. Chem. Ref. Data 34, 1559 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Hellmann, J. Chem. Phys. 3, 61 (1935)ADSCrossRefGoogle Scholar
  13. 13.
    G.A. Hart, P.L. Goodfriend, J. Chem. Phys. 53, 448 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    W.H.E. Schwarz, J. Chem. Phys. 54, 1842 (1971)ADSCrossRefGoogle Scholar
  15. 15.
    J. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B 43, 202001 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Thakkar, C. Lupinetti, Atomic Polarizabilities and Hyperpolarizabilities: A Critical Compilation, in Atoms, Molecules, and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizability, edited by George Maroulis (Imperial College Press, 2006), p. 505Google Scholar
  17. 17.
    A. Askar, A.S. Cakmak, J. Chem. Phys. 68, 2794 (1978)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Grossmann, Theoretical Femtosecond Physics (Springer-Verlag, Berlin, 2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrej Bunjac
    • 1
  • Duška B. Popović
    • 1
  • Nenad S. Simonović
    • 1
  1. 1.Institute of Physics, University of BelgradeBelgradeSerbia

Personalised recommendations