Ion formation upon electron collisions with valine embedded in helium nanodroplets

  • Nikolaus Weinberger
  • Stefan Ralser
  • Michael Renzler
  • Martina Harnisch
  • Alexander Kaiser
  • Stefan Denifl
  • Diethard K. Böhme
  • Paul Scheier
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering

Abstract

We report here experimental results for the electron ionization of large superfluid helium nanodroplets with sizes of about 105 atoms that are doped with valine and clusters of valine. Spectra of both cations and anions were monitored with high-resolution time-of-flight mass spectrometry (mass resolution >4000). Clear series of peaks with valine cluster sizes up to at least 40 and spaced by the mass of a valine molecule are visible in both the cation and anion spectra. Ion efficiency curves are presented for selected cations and anions at electron energies up to about 40 eV and these provide insight into the mode of ion formation. The measured onset of 24.59 eV for cations is indicative of valine ionization by He+ whereas broad resonances at 2, 10 and 22 eV (and beyond) in the formation of anions speak to the occurrence of various modes of dissociative electron attachment by collisions with electrons or He* and the influence of droplet size on the relative importance of these processes. Comparisons are also made with gas phase results and these provide insight into a matrix effect within the superfluid helium nanodroplet.

Graphical abstract

References

  1. 1.
    M.A. Śmiałek, P. Limão-Vieira, N.J. Mason, A.V. Solov’yov, Eur. Phys. J. D 68, 312 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    E. Alizadeh, T.M. Orlando, L. Sanche, Ann. Rev. Phys. Chem. 66, 379 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    I. Baccarelli, I. Bald, E. Illenberger, F.A. Gianturco, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    R. Janečková, D. Kubala, O. May, J. Fedor, M. Allan, Phys. Rev. Lett. 111, 213201 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    M. Allan, Phys. Rev. Lett. 98, 123201 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    B.C. Ibǎnescu, O. May, M. Allan, Phys. Chem. Chem. Phys. 10, 1507 (2008)CrossRefGoogle Scholar
  7. 7.
    Y. Hu, E.R. Bernstein, J. Chem. Phys. 128, 164311 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A.F. Lago, L.H. Coutinho, R.R.T. Marinho, A. Naves de Brito, G.G.B. de Souza, Chem. Phys. 307, 9 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    P. Papp, J. Urban, Š. Matejčík, M. Stano, O. Ingolfsson, J. Chem. Phys. 125, 204301 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    P. Papp, P. Shchukin, J. Kočíšek, Š. Matejčík, J. Chem. Phys. 137, 105101 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    H.-W. Jochims, M. Schwell, J.-L. Chotin, M. Clemino, F. Dulieu, H. Baumgärtel, S. Leach, Chem. Phys. 298, 279 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    V. Vorsa, T. Kono, K.F. Willey, N. Winograd, J. Phys. Chem. B 103, 7889 (1999)CrossRefGoogle Scholar
  13. 13.
    S. Maclot, M. Capron, R. Maisonny, A. Ławicki, A. Méry, J. Rangama, J.-Y. Chesnel, S. Bari, R. Hoekstra, T. Schlathölter, B. Manil, L. Adoui, P. Rousseau, B.A. Huber, ChemPhysChem 12, 930 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Denifl, H.D. Flosadóttir, A. Edtbauer, O. Ingólfsson, T.D. Märk, P. Scheier, Eur. Phys. J. D 60, 37 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    H. Dögg Flosadottir, S. Denifl, F. Zappa, N. Wendt, A. Mauracher, A. Bacher, H. Jonsson, T.D. Märk, P. Scheier, O. Ingolfsson, Angew. Chem. Int. Ed. 46, 8057 (2007)CrossRefGoogle Scholar
  16. 16.
    T. Schlathölter, F. Alvarado, S. Bari, A. Lecointre, R. Hoekstra, V. Bernigaud, B. Manil, J. Rangama, B. Huber, ChemPhysChem 7, 2339 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Neustetter, J. Aysina, F.F. da Silva, S. Denifl, Angew. Chem. Int. Ed. 54, 9124 (2015)CrossRefGoogle Scholar
  18. 18.
    J.-C. Poully, V. Vizcaino, L. Schwob, R. Delaunay, J. Kocisek, S. Eden, J.-Y. Chesnel, A. Mery, J. Rangama, L. Adoui, B. Huber, ChemPhysChem 16, 2389 (2015)CrossRefGoogle Scholar
  19. 19.
    J.P. Toennies, A.F. Vilesov, Angew. Chem., Int. Ed. 43, 2622 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Denifl, I. Mähr, F. Ferreira da Silva, F. Zappa, T.D. Märk, P. Scheier, Eur. Phys. J. D 51, 73 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    B. Bellina, D.J. Merthe, V.V. Kresin, J. Chem. Phys. 142, 114306 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Ren, V.V. Kresin, J. Chem. Phys. 128, 074303 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Ren, R. Moro, V.V. Kresin, Eur. Phys. J. D 43, 109 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    X. Zhang, N.B. Brauer, G. Berden, A.M. Rijs, M. Drabbels, J. Chem. Phys. 136, 044305 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    N.B. Brauer, S. Smolarek, X. Zhang, W.J. Buma, M. Drabbels, J. Phys. Chem. Lett. 2, 1563 (2011)CrossRefGoogle Scholar
  26. 26.
    W. Kong, L. Pei, J. Zhang, Int. Rev. Phys. Chem. 28, 33 (2009)CrossRefGoogle Scholar
  27. 27.
    F. Bierau, P. Kupser, G. Meijer, G. von Helden, Phys. Rev. Lett. 105, 133402 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    U. Henne, J.P. Toennies, J. Chem. Phys. 108, 9327 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    R. Sliter, L.F. Gomez, J. Kwok, A. Vilesov, Chem. Phys. Lett. 600, 29 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, J. Chem. Phys. 135, 154201 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    L. An der Lan, P. Bartl, C. Leidlmair, H. Schoöbel, R. Jochum, S. Denifl, T.D. Maärk, A.M. Ellis, P. Scheier, J. Chem. Phys. 135, 044309 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    H. Schöbel, C. Leidlmair, P. Bartl, A. Aleem, M. Hager, O. Echt, T.D. Märk, P. Scheier, Phys. Chem. Chem. Phys. 13, 1092 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Ralser, J. Postler, M. Harnisch, A.M. Ellis, P. Scheier, Int. J. Mass Spectrom. 379, 194 (2015)CrossRefGoogle Scholar
  34. 34.
    O. Echt, K. Sattler, E. Recknagel, Phys. Rev. Lett. 47, 1121 (1981)ADSCrossRefGoogle Scholar
  35. 35.
    M. Goulart, P. Bartl, A. Mauracher, F. Zappa, A.M. Ellis, P. Scheier, Phys. Chem. Chem. Phys. 15, 3577 (2013)CrossRefGoogle Scholar
  36. 36.
    C. Leidlmair, P. Bartl, H. Schöbel, S. Denifl, S. Yang, A.M. Ellis, P. Scheier, ChemPhysChem 13, 469 (2012)CrossRefGoogle Scholar
  37. 37.
    S.E. Stein, NIST Mass Spec Data Center, NIST Chemistry Webbook, NIST Standard Reference Database Number 69, edited by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg MD, 20899), http://webbook.nist.gov/chemistry (Access Date December 15th 2015)
  38. 38.
    S.F. Yang, S.M. Brereton, M.D. Wheeler, A.M. Ellis, Phys. Chem. Chem. Phys. 7, 4082 (2005)CrossRefGoogle Scholar
  39. 39.
    S. Denifl, F. Zappa, I. Mähr, J. Lecointre, M. Probst, T.D. Märk, P. Scheier, Phys. Rev. Lett. 97, 043201 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    S. Denifl, F. Zappa, A. Mauracher, F. Ferreira da Silva, A. Bacher, O. Echt, T.D. Märk, D.K. Böhme, P. Scheier, ChemPhysChem 9, 1387 (2008)CrossRefGoogle Scholar
  41. 41.
    A. Mauracher, H. Schöbel, F. Ferreira da Silva, A. Edtbauer, C. Mitterdorfer, S. Denifl, T.D. Märk, E. Illenberger, P. Scheier, Phys. Chem. Chem. Phys. 11, 8240 (2009)CrossRefGoogle Scholar
  42. 42.
    A. Mauracher, M. Daxner, J. Postler, S.E. Huber, S. Denifl, P. Scheier, J.P. Toennies, J. Phys. Chem. Lett. 5, 2444 (2014)CrossRefGoogle Scholar
  43. 43.
    S.E. Huber, A. Mauracher, J. Phys. Chem. A 118, 6642 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Renzler, M. Daxner, N. Weinberger, S. Denifl, P. Scheier, O. Echt, Phys. Chem. Chem. Phys. 16, 22466 (2014)CrossRefGoogle Scholar
  45. 45.
    A.L. Fetter, in The Physics of Liquid and Solid Helium, edited by K.H. Bennemann, J.B. Ketterson (Wiley, New York, 1976), Pt. 1, p. 207, and references thereinGoogle Scholar
  46. 46.
    K. Martini, J.P. Toennies, C. Winkler, Chem. Phys. Lett. 178, 429 (1991)ADSCrossRefGoogle Scholar
  47. 47.
    J. Postler, V. Vizcaino, S. Denifl, F. Zappa, S. Ralser, M. Daxner, E. Illenberger, P. Scheier, J. Phys. Chem. A 118, 6553 (2014)CrossRefGoogle Scholar
  48. 48.
    F. Ferreira da Silva, S. Ptasinska, S. Denifl, D. Gschliesser, J. Postler, C. Matias, T.D. Märk, P. Limão-Vieira, P. Scheier, J. Chem. Phys. 135, 174504 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    F. Ferreira da Silva, S. Jaksch, G. Martins, H.M. Dang, M. Dampc, S. Denifl, T.D. Märk, P. Limao-Vieira, J. Liu, S. Yang, A.M. Ellis, P. Scheier, Phys. Chem. Chem. Phys. 11, 11631 (2009)CrossRefGoogle Scholar
  50. 50.
    F. Ferreira da Silva, S. Denifl, T.D. Märk, A.M. Ellis, P. Scheier, J. Chem. Phys. 132, 214306 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    F. Zappa, S. Denifl, I. Mähr, A. Bacher, O. Echt, T.D. Märk, P. Scheier, J. Am. Chem. Soc. 130, 5573 (2008)CrossRefGoogle Scholar
  52. 52.
    A. Mauracher, M. Daxner, S.E. Huber, J. Postler, M. Renzler, S. Denifl, P. Scheier, A.M. Ellis, J. Chem. Phys. 142, 104306 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    A. Mauracher, M. Daxner, S.E. Huber, J. Postler, M. Renzler, S. Denifl, P. Scheier, A.M. Ellis, Angew. Chem. Int. Ed. 53, 13794 (2014)CrossRefGoogle Scholar
  54. 54.
    A.W. Hauser, A. Volk, P. Thaler, W.E. Ernst, Phys. Chem. Chem. Phys. 17, 10805 (2015)CrossRefGoogle Scholar
  55. 55.
    M. Rosenblit, J. Jortner, J. Chem. Phys. 124, 194505 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    M. Rosenblit, J. Jortner, J. Chem. Phys. 124, 194506 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    W. Wei, Z.L. Xie, G.M. Seidel, H.J. Maris, J. Low Temp. Phys. 171, 178 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Nikolaus Weinberger
    • 1
  • Stefan Ralser
    • 1
  • Michael Renzler
    • 1
  • Martina Harnisch
    • 1
  • Alexander Kaiser
    • 1
  • Stefan Denifl
    • 1
  • Diethard K. Böhme
    • 2
  • Paul Scheier
    • 1
  1. 1.Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckInnsbruckAustria
  2. 2.Department of ChemistryYork UniversityTorontoCanada

Personalised recommendations