Hydrogenated pyrene: Statistical single-carbon loss below the knockout threshold

  • Michael Wolf
  • Linda Giacomozzi
  • Michael Gatchell
  • Nathalie de Ruette
  • Mark H. Stockett
  • Henning T. Schmidt
  • Henrik Cederquist
  • Henning Zettergren
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions (7th International Symposium)

Abstract

An ongoing discussion revolves around the question of what effect hydrogenation has on carbon backbone fragmentation in polycyclic aromatic hydrocarbons (PAHs). In order to shed more light on this issue, we have measured absolute single carbon loss cross sections in collisions between native or hydrogenated pyrene cations (C16H+10+m, m = 0, 6, 16) and He as functions of center-of-mass energies down to 20 eV. Classical molecular dynamics (MD) simulations give further insight into energy transfer processes and also yield m-dependent threshold energies for prompt (femtoseconds) carbon knockout. Such fast, non-statistical fragmentation processes dominate CHx-loss for native pyrene (m = 0), while much slower statistical fragmentation processes contribute significantly to single-carbon loss for the hydrogenated molecules (m = 6 and m = 16). The latter is shown by measurements of large CHx-loss cross sections far below the MD knockout thresholds for C16H+16 and C16H+26.

Graphical abstract

References

  1. 1.
    L.J. Allamandola, D.M. Hudgins, S.A. Sandford, Astrophys. J. Lett. 511, L115 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    A.G.G.M. Tielens, Annu. Rev. Astron. Astrophys. 46, 289 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    A.G.G.M. Tielens, Rev. Mod. Phys. 85, 1021 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    S. Denifl, S. Ptasińska, B. Sonnweber, P. Scheier, D. Liu, F. Hagelberg, J. Mack, L.T. Scott, T.D. Märk, J. Chem. Phys. 123, 104308 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S. Denifl, B. Sonnweber, J. Mack, L. Scott, P. Scheier, K. Becker, T. Märk, Int.. J. Mass Spectrom. 249-250, 353 (2006)CrossRefGoogle Scholar
  6. 6.
    E. Rauls, L. Hornekær, Astrophys. J. 679, 531 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, Astron. Astrophys. 510, A37 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, Astron. Astrophys. 510, A36 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J. Postma, S. Bari, R. Hoekstra, A.G.G.M. Tielens, T. Schlathölter, Astrophys. J. 708, 435 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A.I.S. Holm, H.A.B. Johansson, H. Cederquist, H. Zettergren, J. Chem. Phys. 134, 044301 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    H.A.B. Johansson et al., Phys. Rev. A 84, 043201 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Martin, L. Chen, R. Brédy, G. Montagne, C. Ortega, T. Schlathölter, G. Reitsma, J. Bernard, Phys. Rev. A 85, 052715 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Martin, J. Bernard, R. Brédy, B. Concina, C. Joblin, M. Ji, C. Ortega, L. Chen, Phys. Rev. Lett. 110, 063003 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    G. Reitsma, H. Zettergren, L. Boschman, E. Bodewits, R. Hoekstra, T. Schlathölter, J. Phys. B 46, 245201 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J. Postma, R. Hoekstra, A.G.G.M. Tielens, T. Schlathölter, Astrophys. J. 783, 61 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    M.H. Stockett et al., Phys. Chem. Chem. Phys. 16, 21980 (2014)CrossRefGoogle Scholar
  17. 17.
    P.M. Mishra, J. Rajput, C.P. Safvan, S. Vig, U. Kadhane, J. Phys. B 47, 085202 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    B. West, F. Useli-Bacchitta, H. Sabbah, V. Blanchet, A. Bodi, P.M. Mayer, C. Joblin, J. Phys. Chem. A 118, 7824 (2014)CrossRefGoogle Scholar
  19. 19.
    R.I. Kaiser, D.S. Parker, A.M. Mebel, Annu. Rev. Phys. Chem. 66, 43 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    R. Delaunay et al., J. Phys. Chem. Lett. 6, 1536 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Gatchell et al., Phys. Rev. A 92, 050702(R) (2015)ADSCrossRefGoogle Scholar
  22. 22.
    T. Chen et al., J. Chem. Phys. 140, 224306 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Gatchell et al., Int. J. Mass Spectrom. 365–366, 260 (2014)CrossRefGoogle Scholar
  24. 24.
    M.H. Stockett et al., Phys. Rev. A 89, 032701 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M.H. Stockett, M. Gatchell, T. Chen, N. de Ruette, L. Giacomozzi, M. Wolf, H.T. Schmidt, H. Zettergren, H. Cederquist, J. Phys. Chem. Lett. 6, 4504 (2015)CrossRefGoogle Scholar
  26. 26.
    M.H. Stockett et al., J. Phys.: Conf. Ser. 635, 012036 (2015)Google Scholar
  27. 27.
    S. Cazaux, L. Boschman, N. Rougeau, G. Reitsma, R. Hoekstra, D. Teillet-Billy, S. Morisset, M. Spaans, T. Schlathölter, Sci. Rep. 6, 19835 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    G. Reitsma, L. Boschman, M.J. Deuzeman, O. González-Magaña, S. Hoekstra, S. Cazaux, R. Hoekstra, T. Schlathölter, Phys. Rev. Lett. 113, 053002 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    R.D. Thomas et al., Rev. Sci. Instrum. 82, 065112 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    H.T. Schmidt et al., Rev. Sci. Instrum. 84, 055115 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    N. Haag, Ph.D. thesis, Stockholm University, 2011Google Scholar
  32. 32.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  33. 33.
  34. 34.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    J. Tersoff, Phys. Rev. B 39, 5566 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    F. de Brito Mota, J.F. Justo, A. Fazzio, J. Appl. Phys. 86, 1843 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    J.F. Ziegler, J.P. Biersack, U. Littmark, In The Stopping and Range of Ions in Matter (Pergamon, New York, 1985), Vol. 1Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  • Michael Wolf
    • 1
  • Linda Giacomozzi
    • 1
  • Michael Gatchell
    • 1
  • Nathalie de Ruette
    • 1
  • Mark H. Stockett
    • 1
    • 2
  • Henning T. Schmidt
    • 1
  • Henrik Cederquist
    • 1
  • Henning Zettergren
    • 1
  1. 1.Department of PhysicsStockholm UniversityStockholmSweden
  2. 2.Department of Physics and Astronomy, Aarhus UniversityAarhusDenmark

Personalised recommendations