Advertisement

Capture approximations beyond a statistical quantum mechanical method for atom-diatom reactions

  • Lizandra Barrios
  • Jesús Rubayo-Soneira
  • Tomás González-LezanaEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions (7th International Symposium)

Abstract

Statistical techniques constitute useful approaches to investigate atom-diatom reactions mediated by insertion dynamics which involves complex-forming mechanisms. Different capture schemes based on energy considerations regarding the specific diatom rovibrational states are suggested to evaluate the corresponding probabilities of formation of such collision species between reactants and products in an attempt to test reliable alternatives for computationally demanding processes. These approximations are tested in combination with a statistical quantum mechanical method for the S + H2(v = 0,j = 1) → SH + H and Si + O2(v = 0,j = 1) → SiO + O reactions, where this dynamical mechanism plays a significant role, in order to probe their validity.

Graphical abstract

Keywords

Total Angular Momentum Capture Probability Rotational Quantum Number Vibrational Distribution Product Diatom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.C. Light, J. Chem. Phys. 40, 3221 (1964)ADSCrossRefGoogle Scholar
  2. 2.
    P. Pechukas, J.C. Light, J. Chem. Phys. 42, 3281 (1965)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    J.C. Light, J. Lin, J. Chem. Phys. 43, 3209 (1965)ADSCrossRefGoogle Scholar
  4. 4.
    J. Lin, J. Light, J. Chem. Phys. 45, 2545 (1966)ADSCrossRefGoogle Scholar
  5. 5.
    P. Pechukas, J.C. Light, C. Rankin, J. Chem. Phys. 44, 794 (1966)ADSCrossRefGoogle Scholar
  6. 6.
    R.A. White, J.C. Light, J. Chem. Phys. 55, 379 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    W.H. Miller, J. Chem. Phys. 52, 543 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Light, Discuss. Faraday Soc. 44, 14 (1967)CrossRefGoogle Scholar
  9. 9.
    W.B. Miller, S.A. Safron, D.R. Herschbach, Discuss. Faraday Soc. 44, 108 (1967)CrossRefGoogle Scholar
  10. 10.
    S. Safron, N. Weinstein, D. Herschbach, J. Tully, Chem. Phys. Lett. 12, 564 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    W.H. Miller, J. Chem. Phys. 65, 2216 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    E. Pollak, P. Pechukas, J. Chem. Phys. 70, 325 (1979)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    E.J. Rackham, F. Huarte-Larrañaga, D.E. Manolopoulos, Chem. Phys. Lett. 343, 356 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    E.J. Rackham, T. González-Lezana, D.E. Manolopoulos, J. Chem. Phys. 119, 12895 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    T. González-Lezana, Int. Rev. Phys. Chem. 26, 29 (2007)CrossRefGoogle Scholar
  16. 16.
    S.Y. Lin, H. Guo, J. Chem. Phys. 120, 9907 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    S.Y. Lin, H. Guo, J. Chem. Phys. 122, 074304 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    S.Y. Lin, H. Guo, J. Phys. Chem. A 108, 10066 (2004)CrossRefGoogle Scholar
  19. 19.
    S.Y. Lin, E.J. Rackham, H. Guo, J. Phys. Chem. A 110, 1534 (2006)CrossRefGoogle Scholar
  20. 20.
    F.J. Aoiz, V. Sáez Rábanos, T. González-Lezana, D.E. Manolopoulos, J. Chem. Phys. 126, 161101 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    F.J. Aoiz, T. González-Lezana, V. Sáez Rábanos, J. Chem. Phys. 127, 174109 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    F.J. Aoiz, T. González-Lezana, V.S. Rábanos, J. Chem. Phys. 129, 094305 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    P. Bargueño, P.G. Jambrina, J.M. Alvariño, M.L. Hernández, F.J. Aoiz, M. Menéndez, E. Verdasco, T. González-Lezana, J. Phys. Chem. A 113, 14237 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Mayneris, A. Saracibar, E.M. Goldfield, M. González, E. García, S.K. Gray, J. Phys. Chem. A 110, 5542 (2006)CrossRefGoogle Scholar
  25. 25.
    P. Larrégaray, L. Bonnet, J.-C. Rayez, J. Phys. Chem. A 110, 1552 (2006)CrossRefGoogle Scholar
  26. 26.
    P. Larrégaray, L. Bonnet, Comput. Theor. Chem. 990, 18 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Bañares, F.J. Aoiz, P. Honvault, J.-M. Launay, J. Phys. Chem. A 108, 1616 (2004)CrossRefGoogle Scholar
  28. 28.
    S.-H. Lee, K. Liu, Appl. Phys. B 71, 627 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    S.-H. Lee, K. Liu, J. Phys. Chem. A 102, 8637 (1998)CrossRefGoogle Scholar
  30. 30.
    F. Dayou, A. Spielfiedel, J. Chem. Phys. 119, 4237 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    F. Dayou, W.-Ü.L. Tchang-Brillet, M. Monnerville, J. Chem. Phys. 123, 084306 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    F. Dayou, P. Larrégaray, L. Bonnet, J.-C. Rayez, P.N. Arenas, T. González-Lezana, J. Chem. Phys. 128, 174307 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    P. Bargueño, T. González-Lezana, P. Larrégaray, L. Bonnet, J.-C. Rayez, Phys. Chem. Chem. Phys. 9, 1127 (2007)CrossRefGoogle Scholar
  34. 34.
    P. Bargueño, T. González-Lezana, P. Larrégaray, L. Bonnet, J.-C. Rayez, M. Hankel, S.C. Smith, A.J.H.M. Meijer, J. Chem. Phys. 128, 244308 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    P. Larrégaray, L. Bonnet, J.-C. Rayez, J. Chem. Phys. 127, 084308 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lizandra Barrios
    • 1
  • Jesús Rubayo-Soneira
    • 1
  • Tomás González-Lezana
    • 2
    Email author
  1. 1.Instituto Superior de Tecnologías y Ciencias AplicadasLa HabanaCuba
  2. 2.Instituto de Física Fundamental (CSIC)MadridSpain

Personalised recommendations