Elastic cross sections for low-energy electron collisions with tetrahydropyran

  • Alessandra Souza Barbosa
  • Márcio H.F. BettegaEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering


We report on calculated elastic cross sections for low-energy electron collisions with the cyclic ether tetrahydropyran (C5H10O). The calculations were carried out with the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange-polarization approximation for energies up to 20 eV. Our cross sections are compared with previous results obtained for cyclohexane and 1,4-dioxane, since the three molecules present similar structures. The calculated differential cross sections for these three molecules present similarities, except at low scattering angles, where the differential cross sections of tetrahydropyran present a sharp increase due to the permanent dipole moment of the molecule. The similarities observed in the cross sections reveal that the molecular geometry plays an important role in the description of scattering process. We also compared our calculated elastic integral cross section for tetrahydropyran with experimental total cross sections data available in the literature and found a good qualitative agreement between both results.

Graphical abstract


Cyclohexane Elastic Scattering Integral Cross Section Elastic Cross Section Cyclic Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.V. Johnson, C.P. Malone, M.A. Khakoo, J.W. McConkey, I. Kanik, J. Phys.: Conf. Ser. 88, 012069 (2007)ADSGoogle Scholar
  2. 2.
    L. Campbell, M. Brunger, Plasma Sources Sci. Technol. 22, 013002 (2013)CrossRefADSGoogle Scholar
  3. 3.
    W.M. Huo, V. McKoy, M.A.P. Lima, T.L. Gibson, Thermophysical Aspects of Reentry Flow, edited by J. Moss, C. Scott (AIAA, New York, 1986), Vol. 103, pp. 152−96Google Scholar
  4. 4.
    M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, 1994)Google Scholar
  5. 5.
    W.N.G. Hitchon, Plasma Processes for Semiconductor Fabrication (Cambridge, 1999)Google Scholar
  6. 6.
    L. Campbell, M.J. Brunger, Plasma Sources Sci. Technol. 22, 013002 (2013)CrossRefADSGoogle Scholar
  7. 7.
    A. Garcia-Sanz, F. Carelli, F. Sebastianelli, F.A. Gianturco, G. Garcia, New J. Phys. 15, 013018 (2013)CrossRefADSGoogle Scholar
  8. 8.
    J.-S. Yoon, M.-Y. Song, H. Kato, M. Hoshino, H. Tanaka, M.J. Brunger, S.J. Buckman, H. Cho, J. Phys. Chem. Ref. Data 39, 033106 (2010)CrossRefADSGoogle Scholar
  9. 9.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)CrossRefADSGoogle Scholar
  10. 10.
    A.J. Ragauskas et al., Science 311, 484 (2006)CrossRefADSGoogle Scholar
  11. 11.
    J. Amorim, C. Oliveira, J.A. Souza-Corrêa, M.A. Ridenti, Plasma Process. Polym. 10, 670 (2013)CrossRefGoogle Scholar
  12. 12.
    E.M. de Oliveira, R.F. daCosta, S.d’A. Sanchez, A.P.P. Natalense, M.H.F. Bettega, M.A.P. Lima, M.T. do M.T. do N. Varella, Phys. Chem. Chem. Phys. 15, 1682 (2013)CrossRefGoogle Scholar
  13. 13.
    A.S. Barbosa, D.F. Pastega, M.H.F. Bettega, Phys. Rev. A 88, 022705 (2013)CrossRefADSGoogle Scholar
  14. 14.
    A.S. Barbosa, M.H.F. Bettega, J. Chem. Phys. 140, 184303 (2014)CrossRefADSGoogle Scholar
  15. 15.
    A.S. Barbosa, M.H.F. Bettega, J. Chem. Phys. 141, 244307 (2014)CrossRefADSGoogle Scholar
  16. 16.
    B.M. Bode, M.S. Gordon, J. Mol. Graph. Mod. 16, 133 (1998)CrossRefGoogle Scholar
  17. 17.
    A.S. Barbosa, M.H.F. Bettega, J. Phys. Conf. Ser. 635, 012016 (2015)CrossRefADSGoogle Scholar
  18. 18.
    C. Szmytkowski, A. Domaracka, P. Mozejko, E. Ptasinska-Denga, J. Chem. Phys. 130, 134316 (2009)CrossRefADSGoogle Scholar
  19. 19.
    C. Szmytkowski, E. Ptasinska-Denga, J. Phys. B 44, 015203 (2011)CrossRefADSGoogle Scholar
  20. 20.
    J.D. Builth-Williams, G.B. da Silva, L. Chiari, D.B. Jones, Hari Chaluvadi, D.H. Madison, M.J. Brunger, J. Chem. Phys. 140, 214312 (2014)CrossRefADSGoogle Scholar
  21. 21.
    A. Zecca, E. Trainotti, L. Chiari, M.H.F. Bettega, S. d’A. Sanchez, M.T. do N. Varella, M.A.P. Lima, M.J. Brunger, J. Chem. Phys. 136, 124305 (2012)CrossRefADSGoogle Scholar
  22. 22.
    K. Takatsuka, V. McKoy, Phys. Rev. A 24, 2473 (1981)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    K. Takatsuka, V. McKoy, Phys. Rev. A 30, 1734 (1984)CrossRefADSGoogle Scholar
  24. 24.
    M.H.F. Bettega, L.G. Ferreira, M.A.P. Lima, Phys. Rev. A 47, 1111 (1993)CrossRefADSGoogle Scholar
  25. 25.
    R.F. da Costa, M. T do N. Varella, M.H.F. Bettega, M.A.P. Lima, Eur. Phys. J. D 69, 159 (2015)CrossRefADSGoogle Scholar
  26. 26.
    P. Palihawadana, J.P. Sullivan, S.J. Buckman, Z. Masin, J.D. Gorfinkiel, F. Blanco, G. Garcia, M.J. Brunger, J. Chem. Phys. 139, 014308 (2013)CrossRefADSGoogle Scholar
  27. 27.
    M.A.P. Lima, L.M. Brescansin, A.J.R. da Silva, C. Winstead, V. McKoy, Phys. Rev. A 41, 327 (1990)CrossRefADSGoogle Scholar
  28. 28.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  29. 29.
    G.B. Bachelet, D.R. Hamann, M. Schlüter, Phys. Rev. B 26, 4199 (1982)CrossRefADSGoogle Scholar
  30. 30.
    M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lima, L.G. Ferreira, Int. J. Quantum Chem. 60, 821 (1996)CrossRefGoogle Scholar
  31. 31.
    C.W. Bauschlicher, J. Chem. Phys. 72, 880 (1980)CrossRefADSGoogle Scholar
  32. 32.
    F. Kossoski, M.H.F. Bettega, J. Chem. Phys. 138, 234311 (2013)CrossRefADSGoogle Scholar
  33. 33.
    CRC Handbook of Chemistry and Physics, edited by D.R. Lide, 85th edn (CRC, Boca Raton, 2005)Google Scholar
  34. 34.
    E.M. de Oliveira, R.F. da Costa, S. d’A. Sanchez, A.P.P. Natalense, M.H.F. Bettega, M.A.P. Lima, M.T. do N. Varella, Phys. Chem. Chem. Phys. 15, 1682 (2013)CrossRefGoogle Scholar
  35. 35.
    M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, L.G. Ferreira, J. Chem. Phys. 111, 6396 (1999)CrossRefADSGoogle Scholar
  36. 36.
    C. Winstead, V. McKoy, J. Chem. Phys. 125, 074302 (2006)CrossRefADSGoogle Scholar
  37. 37.
    R.F. da Costa, E.M. de Oliveira, M.H.F. Bettega, M.T. do N. Varella, D.B. Jones, M. Brunger, F. Blanco, R. Colmenares, P. Limão-Vieira, G. Garcia, M.A.P. Lima, J. Chem. Phys. 142, 104304 (2015), and the references therein.CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alessandra Souza Barbosa
    • 1
  • Márcio H.F. Bettega
    • 1
    Email author
  1. 1.Departamento de Física, Universidade Federal do ParanáCuritibaBrazil

Personalised recommendations