Advertisement

Ionic thermal effects on photo-electron emission within time-dependent density-functional theory

  • Cong-Zhang Gao
  • Phuong Mai DinhEmail author
  • Paul-Gerhard Reinhard
  • Eric Suraud
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions (7th International Symposium)

Abstract

We study the impact of thermal fluctuations of cluster/molecule shape on photo-electron spectra (PES) and photo-electron angular distributions (PAD) using a detailed time-dependent simulation of the emission dynamics and thermal ionic motion. Basis of the description is time-dependent density-functional theory (TDDFT) coupled to molecular dynamics for ionic motion. Test cases are small Na clusters and the C3 molecule. For Na clusters, we find that PES signals are rather robust for one-photon processes while large smearing of the pattern are observed at lower frequencies in multi-photon processes. This effect can be related to the typical spectral response of the metal clusters. PAD are generally much more robust than PES. The C3 molecule produces a greater variety of thermal response. This happens because this molecule has eigenmodes with much different softness.

Graphical abstract

Keywords

Metal Cluster Laser Polarization Dipole Strength Thermal Ensemble Forward Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Clusters of Atoms and Molecules I–Theory, Experiment, and Clusters of Atoms, Springer Series in Chemical Physics, edited by H. Haberland (Springer, 1994), Vol. 52Google Scholar
  3. 3.
    Clusters of Atoms and Molecules II–Solvation and Chemistry of Free Clusters, and Embedded, Supported and Compressed Clusters, Springer Series in Chemical Physics, edited by H. Haberland (Springer, Berlin, 1994), Vol. 56Google Scholar
  4. 4.
    L. Schweikhard, S. Krückeberg, K. Lützenkirchen, C. Walther, Eur. Phys. J. D 9, 15 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    F. Federmann, K. Hoffmann, N. Quaas, J.P. Toennies, Eur. Phys. J. D 9, 11 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    R. Kusche, T. Hippler, M. Schmidt, B.V. Issendorff, H. Haberland, Eur. Phys. J. D 9, 1 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    T.P. Martin, Phys. Rep. 273, 199 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    U. Röthlisberger, W. Andreoni, J. Chem. Phys 94, 8129 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Blundell, C. Guet, R.R. Zope, Phys. Rev. Lett. 84, 4826 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kümmel, J. Akole, M. Manninen, Phys. Rev. Lett. 84, 3827 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    C. Ellert, M. Schmidt, C. Schmitt, T. Reiners, H. Haberland, Phys. Rev. Lett. 75, 1731 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    B. Montag, P.G. Reinhard, Phys. Rev. B 51, 14686 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    M. Moseler, H. Häkkinen, U. Landman, Phys. Rev. Lett. (2001)Google Scholar
  14. 14.
    P. Gosh, Introduction to photoelectron spectroscopy (Wiley, New York, 1983)Google Scholar
  15. 15.
    K.M. McHugh, J.G. Eaton, G.H. Lee, H.W. Sarkas, L.H. Kidder, J.T. Snodgrass, M.R. Manaa, K.H. Bowen, J. Chem. Phys. 91, 3792 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    G. Wrigge, M.A. Hoffmann, B.V. Issendorff, Phys. Rev. A 65, 063201 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Pinaré, B. Baguenard, C. Bordas, M. Broyer, Euro. Phys. J. D 9, 21 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    J. Akola, M. Manninen, H. Häkkinen, X. Li, U. Landman, L.S. Wang, Phys. Rev. B 60, R11297 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    M. Moseler, B. Huber, H. Häkkinen, U. Landman, G. Wrigge, M.A. Hoffmann, B.V. Issendorff, Phys. Rev. B 68, 165413 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    A. Pohl, P.G. Reinhard, E. Suraud, Phys. Rev. Lett. 84, 5090 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    A. Pohl, P.G. Reinhard, E. Suraud, Phys. Rev. A 70, 023202 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    S. Vidal, Z.P. Wang, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Phys. B 43, 165102 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    P. Wopperer, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 562, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Akola, A. Rytkönen, H. Häkkinen, M. Manninen, Eur. Phys. J. D 8, 93 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    P.G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (Wiley-VCH Verlag, Weinheim, 2004)Google Scholar
  27. 27.
    P. Wopperer, B. Faber, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Lett. A 375, 39 (2010)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    P. Wopperer, B. Faber, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rev. A 82, 063416 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    C. Legrand, E. Suraud, P.G. Reinhard, J. Phys. B 35, 1115 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    S. Kümmel, M. Brack, P.G. Reinhard, Phys. Rev. B 58, R1774 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    B. Montag, P.G. Reinhard, Z. Physik D 33, 265 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    P.G. Reinhard, P.D. Stevenson, D. Almehed, J.A. Maruhn, M.R. Strayer, Phys. Rev. E 73, 036709 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    D. Turner, Molecular Photoelectron Spectroscopy (Wiley, New York, 1970)Google Scholar
  38. 38.
    P. Ghosh, Introduction to photoelectron spectroscopy (John Wiley and Sons, New York, 1983)Google Scholar
  39. 39.
    P.M. Dinh, P. Romaniello, P.G. Reinhard, E. Suraud, Phys. Rev. A 87, 032514 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    M. Brack, Rev. Mod. Phys. 65, 677 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    H. Haberland, T. Hippler, J. Donges, O. Kostko, M. Schmidt, B. von Issendorff, Phys. Rev. Lett. 94, 035701 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    K.M. McHugh, J.G. Eaton, G.H. Lee, H.W. Sarkas, L.H. Kidder, J.T. Snodgrass, M.R. Manaa, K.H. Bowen, J. Chem. Phys. 91, 3792 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    C. Bartels, Ph.D. thesis, Albert-Ludwigs-Universität, Freiburg, 2008Google Scholar
  44. 44.
    F. Fehrer, P.G. Reinhard, E. Suraud, Appl. Phys. A 82, 145 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    P. Wopperer, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Phys. Conf. Ser. 438, 012010 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    C.Z. Gao, P. Dinh, P.G. Reinhard, E. Suraud, Ann. Phys. 360, 98 (2015)CrossRefGoogle Scholar
  47. 47.
    F. Calvayrac, P.G. Reinhard, E. Suraud, Ann. Phys. 255, 125 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    P. Wopperer, P.M. Dinh, E. Suraud, P.G. Reinhard, Phys. Rev. A 85, 015402 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    P. Wopperer, et al., Phys. Rev. A 91, 042514 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cong-Zhang Gao
    • 1
  • Phuong Mai Dinh
    • 1
    Email author
  • Paul-Gerhard Reinhard
    • 2
  • Eric Suraud
    • 1
  1. 1.Laboratoire de Physique Théorique, Université Paul Sabatier, CNRSToulouseFrance
  2. 2.Institut für Theoretische Physik, Universität ErlangenErlangenGermany

Personalised recommendations