Advertisement

Role of the electromagnetic momentum in the spin-orbit interaction

  • Gianfranco SpavieriEmail author
Regular Article

Abstract

The role played by the linear and angular momentum of the electromagnetic fields in the understanding of several aspects of quantum mechanics is discussed. A non-relativistic semi-classical model of the spin-orbit interaction, where the electromagnetic interaction energy U is calculated in the frame of the nucleus, is presented. Taking into account the electron hidden momentum P h = c -1 μ × E, the spin-orbit energy splitting turns out to be Δ so = (1 / 2)U, the factor 1 / 2 emerging directly by requiring that the energy variation be a minimum. After quantization, the radius of the orbit is found to be spin-dependent, anticipating a feature of the Dirac equation. Finally, a test of the hidden momentum P h , which may corroborate the approaches based on the hidden momentum and related interpretations of electrodynamics, is proposed and shown to be viable with present technology.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Spavieri, Phys. Rev. Lett. 81, 1533 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    G. Spavieri, Phys. Rev. A 59, 3194 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    G. Spavieri, Phys. Lett. A 310, 13 (2003)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    The force on the magnetic dipole has been derived in the context of the “Shockley-James paradox”: W. Shockley, R.R. James, Phys. Rev. Lett. 18, 876 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Aharonov, P. Pearle, L. Vaidman, Phys. Rev. A 37, 4052 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    L. Vaidman, Am. J. Phys. 58, 978 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    V. Hnizdo, Eur. J. Phys. 33, L3 (2012)CrossRefGoogle Scholar
  10. 10.
    G. Spavieri, Nuovo Cimento. B 109, 45 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    G. Spavieri, G.T. Gillies, Pramana – J. Phys. 87, 19c Indian Academy of Sciences (2016)Google Scholar
  12. 12.
    J.H. Hannay, Cambridge University Hamilton prize essay (unpublished, 1976)Google Scholar
  13. 13.
    R.J. Cook, H. Fearn, P.W. Milonni, Am. J. Phys. 63, 705 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    U. Leonhardt, P. Piwnicki, Phys. Rev. A 60, 4301 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    U. Leonhardt, P. Piwnicki, Phys. Rev. Lett. 84, 822 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    G. Spavieri, Eur. Phys. J. D 39, 157 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Shuichi Iida, J. Phys. Soc. Jpn 137, 1183 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    R.S. Van Dyck Jr, P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. D 34, 722 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    J. Schwinger, Phys. Rev. 73, 416 (1948)ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999), Sects. 11–8 and 11–11Google Scholar
  21. 21.
    R. Eisberg, R. Resnick, Quantum Physics (Wiley, New York, 1974), Sects. 7–7 and 8–4Google Scholar
  22. 22.
    L.H. Thomas, Nature 117, 514 (1926)ADSCrossRefGoogle Scholar
  23. 23.
    L.H. Thomas, Phil. Mag. 3, 1 (1927)CrossRefGoogle Scholar
  24. 24.
    See for example: W.H. Furry, Am. J. Phys. 23, 517 (1955)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    D. Shelupsky, Am. J. Phys. 35, 650 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    H. Kroemer, Am. J. Phys. 72, 51 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    M. Chrysos, Eur. J. Phys. 27, 1 (2006)CrossRefGoogle Scholar
  28. 28.
    R.A. Muller, Am. J. Phys. 60, 313 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    G. Muñoz, Am. J. Phys. 69, 554 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    K. Rȩbilas, Am. J. Phys. 83, 199 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    G.P. Fisher, Am. J. Phys. 40, 1772 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    A.L. Kholmetskii, O.V. Missevitch, T. Yarman, Am. J. Phys. 78, 428 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    D.C. Lush, Am. J. Phys. 78, 428 (2010)CrossRefGoogle Scholar
  34. 34.
    A.L. Kholmetskii, O.V. Missevitch, T. Yarman, Am. J. Phys. 78, 1422 (2010)ADSGoogle Scholar
  35. 35.
    G. Spavieri, M. Mansuripur, Phys. Scr. 90, 085501 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    B. Berestetskii, E.M. Lifshits, L.P. Pitaevskii, Quantum Electrodynamics, 2nd edn. (Pergamon, Oxford, 1982)Google Scholar
  37. 37.
    M. Mansuripur, Phys. Rev. Lett. 108, 193901 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    M. Khorrami, Phys. Rev. Lett. 110, 089404 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    P. Saldanha, Phys. Rev. Lett. 110, 089403 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    B. Kemp, Prog. Opt. 60, 437 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Mansuripur, Optical Trapping and Optical Micromanipulation X, edited by K. Dholakia, G.C. Spalding, Proc. SPIE 8810, 88100K-1:18 (2013)Google Scholar
  42. 42.
    C. Sheppard, B. Kemp, Phys. Rev. A 93, 013855 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centro de Física Fundamental, Facultad de Ciencias, Universidad de Los AndesMéridaVenezuela

Personalised recommendations