Advertisement

Gas breakdown and plasma impedance in split-ring resonators

  • Alan R. HoskinsonEmail author
  • Stephen Parsons
  • Jeffrey Hopwood
Regular Article
Part of the following topical collections:
  1. Topical Issue: Recent Breakthroughs in Microplasma Science and Technology

Abstract

The appearance of resonant structures in metamaterials coupled to plasmas motivates the systematic investigation of gas breakdown and plasma impedance in split-ring resonators over a frequency range of 0.5−9 GHz. In co-planar electrode gaps of 100 μm, the breakdown voltage amplitude decreases from 280 V to 225 V over this frequency range in atmospheric argon. At the highest frequency, a microplasma can be sustained using only 2 mW of power. At 20 mW, we measure a central electron density of 2 × 1020 m-3. The plasma-electrode overlap plays a key role in the microplasma impedance and causes the sheath impedance to dominate the plasma resistance at very low power levels.

Graphical abstract

Keywords

Breakdown Voltage Split Ring Resonator Plasma Resistance Sheath Thickness Plasma Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O. Sakai, K. Tachibana, Plasma Sources Sci. Technol. 21, 013001 (2012) CrossRefADSGoogle Scholar
  2. 2.
    P.K. Singh, J. Hopwood, S. Sonkusale, Sci. Rep. 4 (2014)Google Scholar
  3. 3.
    A. Iwai, Y. Nakamura, A. Bambina, O. Sakai, Appl. Phys. Express 8, 056201 (2015)CrossRefADSGoogle Scholar
  4. 4.
    B. Guo, J. Electromagn. Anal. Appl. 26, 2445 (2012)CrossRefGoogle Scholar
  5. 5.
    A.R. Hoskinson, P.K. Singh, S. Sonkusale, J. Hopwood, IEEE Electron Device Lett. 34, 804 (2013)CrossRefADSGoogle Scholar
  6. 6.
    A.D. MacDonald, S.C. Brown, Phys. Rev. 75, 411 (1949)CrossRefADSGoogle Scholar
  7. 7.
    A.D. MacDonald, S.C. Brown, Phys. Rev. 76, 1634 (1949)CrossRefADSzbMATHGoogle Scholar
  8. 8.
    J.D. Campbell, A. Bowman III, G.T. Lenters, S.K. Remillard, AIP Adv. 4, 017119 (2014)CrossRefADSGoogle Scholar
  9. 9.
    S. Kühn, C. Andrei, R. Gesche, On the Ignition Voltage Behavior of Microwave Microplasmas, in Proc. 37th European Microwave Conf., Munich, Germany (European Microwave Association, 2007), pp. 616−619Google Scholar
  10. 10.
    A. Semnani, A. Venkattraman, A.A. Alexeenko, D. Peroulis, Appl. Phys. Lett. 103, 063102 (2013)CrossRefADSGoogle Scholar
  11. 11.
    A. Semnani, D. Peroulis, Electron. Lett 50, 1244 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Semnani, K. Chen, D. Peroulis, IEEE Microw. Wireless Compon. Lett. 24, 351 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Yeol Lee, H. Won Bae, H. June Lee, J.P. Verboncoeur, Plasma Sources Sci. Technol. 23, 035017 (2014)CrossRefADSGoogle Scholar
  14. 14.
    J.L. Walsh, Y.T. Zhang, F. Iza, M.G. Kong, Appl. Phys. Lett. 93, 221505 (2008)CrossRefADSGoogle Scholar
  15. 15.
    F. Iza, J. Hopwood, Plasma Sources Sci. Technol. 14, 397 (2005)CrossRefADSGoogle Scholar
  16. 16.
    A.R. Hoskinson, J. Hopwood, Plasma Source Sci. Technol. 23, 015024 (2014)CrossRefADSGoogle Scholar
  17. 17.
    A.R. Hambley, Electrical Engineering: Principles and Applications, 5th edn. (Prentice Hall, Upper Saddle River, 2011)Google Scholar
  18. 18.
    A.V. Phelps, Z.L. Petrovic, Plasma Sources Sci. Technol. 8, R21 (1999)CrossRefADSGoogle Scholar
  19. 19.
    D. Levko, L.L. Raja, J. Appl. Phys. 117, 173303 (2015)CrossRefADSGoogle Scholar
  20. 20.
    A.R. Hoskinson, J. Gregório, S. Parsons, J. Hopwood, J. Appl. Phys. 117, 163301 (2015)CrossRefADSGoogle Scholar
  21. 21.
    X.-M. Zhu, J.L. Walsh, W.-C. Chen, Y.-K. Pu, J. Phys. D 45, 295201 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Xue, J. Hopwood, IEEE Trans. Plasma Sci. 37, 816 (2009)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alan R. Hoskinson
    • 1
    Email author
  • Stephen Parsons
    • 1
  • Jeffrey Hopwood
    • 1
  1. 1.Electrical and Computer Engineering, Tufts UniversityMedfordUSA

Personalised recommendations