Rare earth functionalization effect in optical response of ZnO nano clusters

  • Manasi S. Mahabal
  • Mrinalini D. Deshpande
  • Sudip Chakraborty
  • Tae Won Kang
  • Rajeev Ahuja
Regular Article

Abstract

The electronic structure of rare earth (RE) doped Zn12O12 clusters – namely, REZn11O12 and RE2Zn10O12 with RE = Nd, Eu and Gd have been investigated within the framework of density functional theory formalism. Doping of a RE atom is found to be energetically favorable in this zinc oxide cluster. We have found that the cage structure of the host cluster Zn12O12 does not change significantly by the substitutional doping of a RE atom on Zn sites. The magnetic coupling between RE ions in the host cluster is found to be ferromagnetic. The static polarizabilities and optical properties of the RE doped Zn12O12 clusters have been studied based on the time dependent density functional theory. With RE doping, the polarizability increases as compared to that of the host cluster. The analysis of the optical absorption spectra indicate that the f electrons in RE doped clusters are significantly more involved in low-energy transitions. For Eu doped clusters give rise to more quenched oscillator strengths as compared to that of Nd and Gd doped zinc oxide clusters. With the increase in number of RE atoms, the red shift is observed in the optical spectrum of the zinc oxide cluster.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    A. Kolodziejczak-Radzimska, T. Jesionowski, Materials 7, 2833 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007)CrossRefGoogle Scholar
  3. 3.
    Z. Wang, Mater. Today 7, 26 (2004)CrossRefGoogle Scholar
  4. 4.
    B. Wang, S. Nagase, J. Zhao, G. Wang, J. Phys. Chem. C 111, 4956 (2007)CrossRefGoogle Scholar
  5. 5.
    C. Li, G. Fang, Y. Ren, Q. Fu, X. Zhao, J. Nanosci. Nanotechnol. 6, 1467 (2006)CrossRefGoogle Scholar
  6. 6.
    G. Li, C. Dawa, X. Lu, X. Yu, Y. Tong, Langmuir 25, 2378 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Ji, L. Yin, G. Liu, L. Zhang, C. Ye, J. Phys. Chem. C 113, 16439 (2009)CrossRefGoogle Scholar
  8. 8.
    T. Ohtake, S. Hijii, N. Sonoyama, T. Sakata, Appl. Surf. Sci. 253, 1753 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    A. Iribarren, P. Fernandez, J. Piqueras, Phys. Stat. Sol. B 251, 683 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    L. Armelao, F. Heigl, A. Jurgensen, R. Blyth, T. Regier, X. Zhou, T. Sham, J. Phys. Chem. C 111, 10194 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Shi, P. Zhang, S.-S. Li, J.-B. Xia, J. Appl. Phys. 106, 023910 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    L. Honglin, L. Yingbo, L. Jinzhu, K. Yu, J. Alloys Compd. 617, 102 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Roy, S. Chakrabarty, O. Mondal, M. Pal, A. Dutta, Mater. Charact. 70, 1 (2012)CrossRefGoogle Scholar
  14. 14.
    J.H. Zheng, J.L. Song, Z. Zhao, Q. Jiang, J.S. Lian, Cryst. Res. Technol. 47, 713 (2012)CrossRefGoogle Scholar
  15. 15.
    V. Kumar, K. Esfarjani, Y. Kawazoe, Clusters and Materiel’s, Springer Series in Cluster Physics (Springer-Verlag, Berlin, 2002), Vol. 9Google Scholar
  16. 16.
    P. Jena, S. Behera, Clusters and Nanostructured Materials (Nova Science, New York, 1996)Google Scholar
  17. 17.
    L. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp, K. Dreisewerd, Appl. Phys. A 78, 641 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    J. Heinzelmann, A. Koop, S. Proch, G.F. Gantefor, R. Lazarski, M. Sierka, J. Phys. Chem. Lett. 5, 2642 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Fernando, K.L.D.M. Weerawardene, N.V. Karimova, C.M. Aikens, Chem. Rev. 115, 6112 (2015)CrossRefGoogle Scholar
  20. 20.
    M.K. Yadav, M. Ghosh, R. Biswas, A.K. Raychaudhuri, A. Mookerjee, S. Datta, Phys. Rev. B 76, 195450 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    E.C. Behrman, R.K. Foehrweiser, J.R. Myers, B.R. French, M.E. Zandler, Phys. Rev. A 49, R1543 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    M. Zhao, Y. Xia, Z. Tan, X. Liu, L. Mei, Phys. Lett. A 372, 39 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    S.H. Vosko, L. Wilk, M. Nusair, Canadian J. Phys. 58, 1200 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Vienna ab initio Simulation Package (VASP), Technische Universität Wien, 1999Google Scholar
  29. 29.
    B. Kaewruksa, W. Pipornpong, B. Wanno, V. Ruangpornvisuti, Comput. Theor. Chem. 1020, 100 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Li, Z. Zhou, X. Wang, W. Huang, Y. He, M. Yang, Phys. Chem. Chem. Phys. 10, 6829 (2008)CrossRefGoogle Scholar
  31. 31.
    Y. Yong, B. Song, B, P. He, J. Phys. Chem. C 115, 6455 (2011)CrossRefGoogle Scholar
  32. 32.
    H. Liu, S. Wang, G. Zhou, J. Wu, W. Duan, J. Chem. Phys. 124, 174705 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    N. Ganguli, I. Dasgupta, B. Sanyal, Appl. Phys. Lett. 94, 192503 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    N. Ganguli, I. Dasgupta, B. Sanyal, J. Appl. Phys. 108, 123911 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S.K. Mandal, A.K. Das, T.K. Nath, D. Karmarkar, B. Satpati, J. Appl. Phys. 100, 104315 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    M. Ungureanu, H. Schmidt, Q. Xu, H.V. Wenckstern, D. Spemann, H. Houchmuth, M. Lorenz, M. Grudmann, Superlat. Microstrut. 42, 231 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    R.P. Davies, C.R. Abernathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Chem. Eng. Commun. 196, 1030 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Mohapatra, D.K. Mishra, S.K. Kamilla, V.R.R. Medicherla, D.M. Phase, V. Berma, S. K Singh, Phys. Stat. Sol. B 248, 1352 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    L. Kronik, A. Makmal, M. Tiago, M.M.G. Alemany, M. Jain, X. Huang, Y. Saad, J.R. Chelikowsky, Phys. Stat. Sol. B 243, 1063 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    M.L. Tiago, J.R. Chelikowsky, Phys. Rev. B 73, 205334 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    M.M.G. Alemany, M. Jain, L. Kronik, J.R. Chelikowsky, Phys. Rev. B 69, 075101 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    J.R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    N. Troullier, J.R. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)ADSCrossRefGoogle Scholar
  45. 45.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  46. 46.
    M.R. Pederson, A.A. Quong, Phys. Rev. B 46, 13584 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    H.A. Kurtz, J.J.P. Stewart, K.M. Dieter, J. Comput. Chem. 11, 82 (1990)CrossRefGoogle Scholar
  48. 48.
    A.B. Rahane, M.D. Deshpande, V. Kumar, J. Phys. Chem. C 116, 6115 (2012)CrossRefGoogle Scholar
  49. 49.
    W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009)ADSGoogle Scholar
  50. 50.
    S.P. Nanavati, V. Sundaranjan, S. Mahamuni, V. Kumar, S.V. Ghaisas, Phys. Rev. B 80, 245417 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    I. Vasiliev, S. Ogut, J.R. Chelikowsky, Phys. Rev. B 65, 115416 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    X. Ma, Z. Wang, Mater. Sci. Semicond. Process. 15, 227 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Manasi S. Mahabal
    • 1
  • Mrinalini D. Deshpande
    • 1
  • Sudip Chakraborty
    • 2
  • Tae Won Kang
    • 3
  • Rajeev Ahuja
    • 2
  1. 1.Department of PhysicsMaharashtraIndia
  2. 2.Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala UniversityUppsalaSweden
  3. 3.Department of PhysicsDongguk UniversitySeoulKorea

Personalised recommendations